Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 25,384 Bytes
f766ce9 8a1daf9 f766ce9 36c5a0c f766ce9 93fda91 f766ce9 93fda91 a0387d8 f766ce9 df659d0 59fa204 f766ce9 59fa204 ebf3ceb 59fa204 2508d96 59fa204 ebf3ceb 2508d96 ebf3ceb 2508d96 ebf3ceb 8a1daf9 a0387d8 ebf3ceb 5808d8f 2508d96 5808d8f 77ded94 2508d96 5808d8f 2508d96 f30cbcc 77ded94 f30cbcc 59fa204 f766ce9 b80bda9 f766ce9 0785fe4 f766ce9 0785fe4 b80bda9 0785fe4 b80bda9 0785fe4 59fa204 ebf3ceb 0785fe4 2508d96 b80bda9 0785fe4 b80bda9 0785fe4 a0387d8 0785fe4 2508d96 0785fe4 2508d96 0785fe4 59fa204 0785fe4 ebf3ceb 0785fe4 2508d96 0785fe4 ebf3ceb b80bda9 0785fe4 b80bda9 0785fe4 5808d8f 0785fe4 2508d96 0785fe4 59fa204 0785fe4 ebf3ceb 2508d96 0785fe4 ebf3ceb 0785fe4 64a83a1 f30cbcc 0785fe4 2508d96 0785fe4 59fa204 b80bda9 0785fe4 ebf3ceb 0785fe4 b80bda9 0785fe4 2508d96 0785fe4 b80bda9 0785fe4 b80bda9 0785fe4 b80bda9 0785fe4 59fa204 0785fe4 2508d96 0785fe4 ebf3ceb 0785fe4 ebf3ceb 0785fe4 f30cbcc 0785fe4 b80bda9 0785fe4 59fa204 0785fe4 ebf3ceb 2508d96 0785fe4 ebf3ceb 0785fe4 64a83a1 0785fe4 64a83a1 0785fe4 8ec7973 36c5a0c a30a228 f000c74 a30a228 f000c74 240d9ce 4cf5eb9 240d9ce 4cf5eb9 240d9ce 69a9e46 93fda91 69a9e46 4a6f9cd d00fb74 2c777fc 36c5a0c d00fb74 9400714 d00fb74 2c777fc 4a6f9cd 9f44d20 4a6f9cd d00fb74 240d9ce d00fb74 9400714 4a6f9cd 36c5a0c 8a1daf9 2508d96 f766ce9 dd592d8 e58b5e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
INTRODUCTION_TEXT,
BENCHMARKS_TEXT,
TITLE,
EVALUATION_QUEUE_TEXT
)
from src.benchmarks import (
DOMAIN_COLS_QA,
LANG_COLS_QA,
DOMAIN_COLS_LONG_DOC,
LANG_COLS_LONG_DOC,
METRIC_LIST,
DEFAULT_METRIC_QA,
DEFAULT_METRIC_LONG_DOC
)
from src.display.css_html_js import custom_css
from src.display.utils import (
COL_NAME_IS_ANONYMOUS,
COL_NAME_REVISION,
COL_NAME_TIMESTAMP,
COL_NAME_RERANKING_MODEL,
COL_NAME_RETRIEVAL_MODEL
)
from src.envs import (
API,
EVAL_RESULTS_PATH,
REPO_ID,
RESULTS_REPO,
TOKEN,
BM25_LINK,
BENCHMARK_VERSION_LIST,
LATEST_BENCHMARK_VERSION
)
from src.read_evals import (
get_raw_eval_results,
get_leaderboard_df
)
from src.utils import (
update_metric,
upload_file,
get_default_cols,
submit_results,
reset_rank,
remove_html
)
from src.display.gradio_formatting import (
get_version_dropdown,
get_search_bar,
get_reranking_dropdown,
get_metric_dropdown,
get_domain_dropdown,
get_language_dropdown,
get_anonymous_checkbox,
get_revision_and_ts_checkbox,
get_leaderboard_table,
get_noreranking_dropdown
)
from src.display.gradio_listener import set_listeners
def restart_space():
API.restart_space(repo_id=REPO_ID)
# try:
# snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
# token=TOKEN
# )
# except Exception as e:
# print(f'failed to download')
# restart_space()
from dataclasses import dataclass
import pandas as pd
from typing import Optional
@dataclass
class LeaderboardDataStore:
raw_data: Optional[list]
raw_df_qa: Optional[pd.DataFrame]
raw_df_long_doc: Optional[pd.DataFrame]
leaderboard_df_qa: Optional[pd.DataFrame]
leaderboard_df_long_doc: Optional[pd.DataFrame]
reranking_models: Optional[list]
types_qa: Optional[list]
types_long_doc: Optional[list]
def load_leaderboard_data(file_path) -> LeaderboardDataStore:
lb_data_store = LeaderboardDataStore(None, None, None, None, None, None, None, None)
lb_data_store.raw_data = get_raw_eval_results(file_path)
print(f'raw data: {len(lb_data_store.raw_data)}')
lb_data_store.raw_df_qa = get_leaderboard_df(
lb_data_store.raw_data, task='qa', metric=DEFAULT_METRIC_QA)
lb_data_store.leaderboard_df_qa = lb_data_store.raw_df_qa.copy()
# leaderboard_df_qa = leaderboard_df_qa[has_no_nan_values(df, _benchmark_cols)]
print(f'QA data loaded: {lb_data_store.raw_df_qa.shape}')
shown_columns_qa, types_qa = get_default_cols(
'qa', lb_data_store.leaderboard_df_qa.columns, add_fix_cols=True)
lb_data_store.types_qa = types_qa
lb_data_store.leaderboard_df_qa = \
lb_data_store.leaderboard_df_qa[~lb_data_store.leaderboard_df_qa[COL_NAME_IS_ANONYMOUS]][shown_columns_qa]
lb_data_store.leaderboard_df_qa.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
lb_data_store.raw_df_long_doc = get_leaderboard_df(
lb_data_store.raw_data, task='long-doc', metric=DEFAULT_METRIC_LONG_DOC)
print(f'Long-Doc data loaded: {len(lb_data_store.raw_df_long_doc)}')
lb_data_store.leaderboard_df_long_doc = lb_data_store.raw_df_long_doc.copy()
shown_columns_long_doc, types_long_doc = get_default_cols(
'long-doc', lb_data_store.leaderboard_df_long_doc.columns, add_fix_cols=True)
lb_data_store.types_long_doc = types_long_doc
lb_data_store.leaderboard_df_long_doc = \
lb_data_store.leaderboard_df_long_doc[~lb_data_store.leaderboard_df_long_doc[COL_NAME_IS_ANONYMOUS]][
shown_columns_long_doc]
lb_data_store.leaderboard_df_long_doc.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
lb_data_store.reranking_models = sorted(
list(frozenset([eval_result.reranking_model for eval_result in lb_data_store.raw_data])))
return lb_data_store
def load_eval_results(file_path: str):
output = {}
versions = ("AIR-Bench_24.04",)
for version in versions:
fn = f"{file_path}/{version}"
output[version] = load_leaderboard_data(fn)
return output
data = load_eval_results(EVAL_RESULTS_PATH)
def update_metric_qa(
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
show_anonymous: bool,
show_revision_and_timestamp: bool,
selected_version: str,
):
return update_metric(data[selected_version].raw_data, 'qa', metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp)
def update_metric_long_doc(
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
show_anonymous: bool,
show_revision_and_timestamp,
):
return update_metric(data["AIR-Bench_24.04"].raw_data, "long-doc", metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("Results", elem_id="results-tab-table"):
with gr.Row():
selected_version = get_version_dropdown()
with gr.TabItem("QA", elem_id="qa-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column(min_width=320):
# select domain
with gr.Row():
selected_domains = get_domain_dropdown(DOMAIN_COLS_QA, DOMAIN_COLS_QA)
# select language
with gr.Row():
selected_langs = get_language_dropdown(LANG_COLS_QA, LANG_COLS_QA)
with gr.Column():
# select the metric
selected_metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC_QA)
with gr.Row():
show_anonymous = get_anonymous_checkbox()
with gr.Row():
show_revision_and_timestamp = get_revision_and_ts_checkbox()
with gr.Tabs(elem_classes="tab-buttons") as sub_tabs:
with gr.TabItem("Retrieval + Reranking", id=10):
with gr.Row():
# search retrieval models
with gr.Column():
search_bar = get_search_bar()
# select reranking models
with gr.Column():
selected_rerankings = get_reranking_dropdown(data["AIR-Bench_24.04"].reranking_models)
leaderboard_table = get_leaderboard_table(data["AIR-Bench_24.04"].leaderboard_df_qa, data["AIR-Bench_24.04"].types_qa)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = get_leaderboard_table(data["AIR-Bench_24.04"].raw_df_qa, data["AIR-Bench_24.04"].types_qa, visible=False)
set_listeners(
"qa",
leaderboard_table,
hidden_leaderboard_table_for_search,
search_bar,
selected_domains,
selected_langs,
selected_rerankings,
show_anonymous,
show_revision_and_timestamp,
)
# set metric listener
selected_metric.change(
update_metric_qa,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings,
search_bar,
show_anonymous,
show_revision_and_timestamp,
selected_version,
],
leaderboard_table,
queue=True
)
"""
with gr.TabItem("Retrieval Only", id=11):
with gr.Row():
with gr.Column(scale=1):
search_bar_retriever = get_search_bar()
with gr.Column(scale=1):
selected_noreranker = get_noreranking_dropdown()
lb_df_retriever = data["AIR-Bench_24.04"].leaderboard_df_qa[data["AIR-Bench_24.04"].leaderboard_df_qa[COL_NAME_RERANKING_MODEL] == "NoReranker"]
lb_df_retriever = reset_rank(lb_df_retriever)
lb_table_retriever = get_leaderboard_table(lb_df_retriever, data["AIR-Bench_24.04"].types_qa)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_lb_df_retriever = data["AIR-Bench_24.04"].raw_df_qa[data["AIR-Bench_24.04"].raw_df_qa[COL_NAME_RERANKING_MODEL] == "NoReranker"]
hidden_lb_df_retriever = reset_rank(hidden_lb_df_retriever)
hidden_lb_table_retriever = get_leaderboard_table(hidden_lb_df_retriever, data["AIR-Bench_24.04"].types_qa, visible=False)
set_listeners(
"qa",
lb_table_retriever,
hidden_lb_table_retriever,
search_bar_retriever,
selected_domains,
selected_langs,
selected_noreranker,
show_anonymous,
show_revision_and_timestamp,
)
# set metric listener
selected_metric.change(
update_metric_qa,
[
selected_metric,
selected_domains,
selected_langs,
selected_noreranker,
search_bar_retriever,
show_anonymous,
show_revision_and_timestamp,
selected_version,
],
lb_table_retriever,
queue=True
)
with gr.TabItem("Reranking Only", id=12):
lb_df_reranker = data["AIR-Bench_24.04"].leaderboard_df_qa[data["AIR-Bench_24.04"].leaderboard_df_qa[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK]
lb_df_reranker = reset_rank(lb_df_reranker)
reranking_models_reranker = lb_df_reranker[COL_NAME_RERANKING_MODEL].apply(remove_html).unique().tolist()
with gr.Row():
with gr.Column(scale=1):
selected_rerankings_reranker = get_reranking_dropdown(reranking_models_reranker)
with gr.Column(scale=1):
search_bar_reranker = gr.Textbox(show_label=False, visible=False)
lb_table_reranker = get_leaderboard_table(lb_df_reranker, data["AIR-Bench_24.04"].types_qa)
hidden_lb_df_reranker = data["AIR-Bench_24.04"].raw_df_qa[data["AIR-Bench_24.04"].raw_df_qa[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK]
hidden_lb_df_reranker = reset_rank(hidden_lb_df_reranker)
hidden_lb_table_reranker = get_leaderboard_table(
hidden_lb_df_reranker, data["AIR-Bench_24.04"].types_qa, visible=False
)
set_listeners(
"qa",
lb_table_reranker,
hidden_lb_table_reranker,
search_bar_reranker,
selected_domains,
selected_langs,
selected_rerankings_reranker,
show_anonymous,
show_revision_and_timestamp,
)
# set metric listener
selected_metric.change(
update_metric_qa,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings_reranker,
search_bar_reranker,
show_anonymous,
show_revision_and_timestamp,
selected_version,
],
lb_table_reranker,
queue=True
)
with gr.TabItem("Long Doc", elem_id="long-doc-benchmark-tab-table", id=1):
with gr.Row():
with gr.Column(min_width=320):
# select domain
with gr.Row():
selected_domains = get_domain_dropdown(DOMAIN_COLS_LONG_DOC, DOMAIN_COLS_LONG_DOC)
# select language
with gr.Row():
selected_langs = get_language_dropdown(
LANG_COLS_LONG_DOC, LANG_COLS_LONG_DOC
)
with gr.Column():
# select the metric
with gr.Row():
selected_metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC_LONG_DOC)
with gr.Row():
show_anonymous = get_anonymous_checkbox()
with gr.Row():
show_revision_and_timestamp = get_revision_and_ts_checkbox()
with gr.Tabs(elem_classes="tab-buttons") as sub_tabs:
with gr.TabItem("Retrieval + Reranking", id=20):
with gr.Row():
with gr.Column():
search_bar = get_search_bar()
# select reranking model
with gr.Column():
selected_rerankings = get_reranking_dropdown(data["AIR-Bench_24.04"].reranking_models)
lb_table = get_leaderboard_table(
data["AIR-Bench_24.04"].leaderboard_df_long_doc, data["AIR-Bench_24.04"].types_long_doc
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_lb_table_for_search = get_leaderboard_table(
data["AIR-Bench_24.04"].raw_df_long_doc, data["AIR-Bench_24.04"].types_long_doc, visible=False
)
set_listeners(
"long-doc",
lb_table,
hidden_lb_table_for_search,
search_bar,
selected_domains,
selected_langs,
selected_rerankings,
show_anonymous,
show_revision_and_timestamp,
)
# set metric listener
selected_metric.change(
update_metric_long_doc,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings,
search_bar,
show_anonymous,
show_revision_and_timestamp
],
lb_table,
queue=True
)
with gr.TabItem("Retrieval Only", id=21):
with gr.Row():
with gr.Column(scale=1):
search_bar_retriever = get_search_bar()
with gr.Column(scale=1):
selected_noreranker = get_noreranking_dropdown()
lb_df_retriever_long_doc = data["AIR-Bench_24.04"].leaderboard_df_long_doc[
data["AIR-Bench_24.04"].leaderboard_df_long_doc[COL_NAME_RERANKING_MODEL] == "NoReranker"
]
lb_df_retriever_long_doc = reset_rank(lb_df_retriever_long_doc)
hidden_lb_db_retriever_long_doc = data["AIR-Bench_24.04"].raw_df_long_doc[
data["AIR-Bench_24.04"].raw_df_long_doc[COL_NAME_RERANKING_MODEL] == "NoReranker"
]
hidden_lb_db_retriever_long_doc = reset_rank(hidden_lb_db_retriever_long_doc)
lb_table_retriever_long_doc = get_leaderboard_table(
lb_df_retriever_long_doc, data["AIR-Bench_24.04"].types_long_doc)
hidden_lb_table_retriever_long_doc = get_leaderboard_table(
hidden_lb_db_retriever_long_doc, data["AIR-Bench_24.04"].types_long_doc, visible=False
)
set_listeners(
"long-doc",
lb_table_retriever_long_doc,
hidden_lb_table_retriever_long_doc,
search_bar_retriever,
selected_domains,
selected_langs,
selected_noreranker,
show_anonymous,
show_revision_and_timestamp,
)
selected_metric.change(
update_metric_long_doc,
[
selected_metric,
selected_domains,
selected_langs,
selected_noreranker,
search_bar_retriever,
show_anonymous,
show_revision_and_timestamp,
],
lb_table_retriever_long_doc,
queue=True
)
with gr.TabItem("Reranking Only", id=22):
lb_df_reranker_ldoc = data["AIR-Bench_24.04"].leaderboard_df_long_doc[
data["AIR-Bench_24.04"].leaderboard_df_long_doc[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK
]
lb_df_reranker_ldoc = reset_rank(lb_df_reranker_ldoc)
reranking_models_reranker_ldoc = lb_df_reranker_ldoc[COL_NAME_RERANKING_MODEL].apply(remove_html).unique().tolist()
with gr.Row():
with gr.Column(scale=1):
selected_rerankings_reranker_ldoc = get_reranking_dropdown(reranking_models_reranker_ldoc)
with gr.Column(scale=1):
search_bar_reranker_ldoc = gr.Textbox(show_label=False, visible=False)
lb_table_reranker_ldoc = get_leaderboard_table(lb_df_reranker_ldoc, data["AIR-Bench_24.04"].types_long_doc)
hidden_lb_df_reranker_ldoc = data["AIR-Bench_24.04"].raw_df_long_doc[data["AIR-Bench_24.04"].raw_df_long_doc[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK]
hidden_lb_df_reranker_ldoc = reset_rank(hidden_lb_df_reranker_ldoc)
hidden_lb_table_reranker_ldoc = get_leaderboard_table(
hidden_lb_df_reranker_ldoc, data["AIR-Bench_24.04"].types_long_doc, visible=False
)
set_listeners(
"long-doc",
lb_table_reranker_ldoc,
hidden_lb_table_reranker_ldoc,
search_bar_reranker_ldoc,
selected_domains,
selected_langs,
selected_rerankings_reranker_ldoc,
show_anonymous,
show_revision_and_timestamp,
)
selected_metric.change(
update_metric_long_doc,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings_reranker_ldoc,
search_bar_reranker_ldoc,
show_anonymous,
show_revision_and_timestamp,
],
lb_table_reranker_ldoc,
queue=True
)
with gr.TabItem("🚀Submit here!", elem_id="submit-tab-table", id=2):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("## ✉️Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name = gr.Textbox(label="Retrieval Method name")
with gr.Column():
model_url = gr.Textbox(label="Retrieval Method URL")
with gr.Row():
with gr.Column():
reranking_model_name = gr.Textbox(
label="Reranking Model name",
info="Optional",
value="NoReranker"
)
with gr.Column():
reranking_model_url = gr.Textbox(
label="Reranking Model URL",
info="Optional",
value=""
)
with gr.Row():
with gr.Column():
benchmark_version = gr.Dropdown(
BENCHMARK_VERSION_LIST,
value=LATEST_BENCHMARK_VERSION,
interactive=True,
label="AIR-Bench Version")
with gr.Row():
upload_button = gr.UploadButton("Click to upload search results", file_count="single")
with gr.Row():
file_output = gr.File()
with gr.Row():
is_anonymous = gr.Checkbox(
label="Nope. I want to submit anonymously 🥷",
value=False,
info="Do you want to shown on the leaderboard by default?")
with gr.Row():
submit_button = gr.Button("Submit")
with gr.Row():
submission_result = gr.Markdown()
upload_button.upload(
upload_file,
[
upload_button,
],
file_output)
submit_button.click(
submit_results,
[
file_output,
model_name,
model_url,
reranking_model_name,
reranking_model_url,
benchmark_version,
is_anonymous
],
submission_result,
show_progress="hidden"
)
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text")
"""
if __name__ == "__main__":
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40)
demo.launch()
|