Spaces:
AIR-Bench
/
Running on CPU Upgrade

File size: 5,908 Bytes
f766ce9
 
 
 
 
 
 
 
 
 
 
9c49811
f766ce9
 
9c49811
 
f766ce9
 
9c49811
 
e8879cc
f766ce9
 
 
 
 
e8879cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f766ce9
9c49811
1e768ec
 
9c49811
f766ce9
8b7a945
 
 
 
 
f766ce9
 
 
 
 
 
 
 
e8879cc
f766ce9
 
 
 
 
 
 
 
e8879cc
f766ce9
e8879cc
 
 
 
 
f766ce9
 
e8879cc
 
 
 
 
 
 
 
 
 
f8b3d0f
f766ce9
e8879cc
 
 
 
 
 
f766ce9
 
e8879cc
 
e93c18c
e8879cc
f766ce9
e8879cc
f766ce9
 
e8879cc
f766ce9
e8879cc
 
f8b3d0f
f766ce9
 
 
 
 
 
f8b3d0f
 
 
 
 
 
61eca2d
 
 
 
 
 
 
 
 
 
 
 
 
 
f8b3d0f
 
 
 
 
 
 
 
 
 
 
 
f766ce9
 
 
 
 
 
 
57ca843
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    QA_BENCHMARK_COLS,
    COLS,
    TYPES,
    AutoEvalColumnQA,
    fields
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_leaderboard_df
from utils import update_table
from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, metric_list


def restart_space():
    API.restart_space(repo_id=REPO_ID)

# try:
#     print(EVAL_REQUESTS_PATH)
#     snapshot_download(
#         repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
#         token=TOKEN
#     )
# except Exception:
#     restart_space()
# try:
#     print(EVAL_RESULTS_PATH)
#     snapshot_download(
#         repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
#         token=TOKEN
#     )
# except Exception:
#     restart_space()

raw_data_qa, original_df_qa = get_leaderboard_df(
    EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, QA_BENCHMARK_COLS, task='qa', metric='ndcg_at_3')
print(f'data loaded: {len(raw_data_qa)}, {original_df_qa.shape}')
leaderboard_df = original_df_qa.copy()

# (
#     finished_eval_queue_df,
#     running_eval_queue_df,
#     pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("QA", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    # select domain
                    with gr.Row():
                        selected_domains = gr.CheckboxGroup(
                            choices=DOMAIN_COLS_QA,
                            value=DOMAIN_COLS_QA,
                            label="Select the domains",
                            elem_id="domain-column-select",
                            interactive=True,
                        )
                    # select language
                    with gr.Row():
                        selected_langs = gr.CheckboxGroup(
                            choices=LANG_COLS_QA,
                            value=LANG_COLS_QA,
                            label="Select the languages",
                            elem_id="language-column-select",
                            interactive=True
                        )
                    # select reranking models
                    reranking_models = list(frozenset([eval_result.reranking_model for eval_result in raw_data_qa]))
                    with gr.Row():
                        selected_rerankings = gr.CheckboxGroup(
                            choices=reranking_models,
                            value=reranking_models,
                            label="Select the reranking models",
                            elem_id="reranking-select",
                            interactive=True
                        )
                with gr.Column(min_width=320):
                    selected_metric = gr.Dropdown(
                        choices=metric_list,
                        value=metric_list[0],
                        label="Select the metric",
                        interactive=True,
                        elem_id="metric-select",
                    )

            # reload the leaderboard_df and raw_data when selected_metric is changed
            leaderboard_table = gr.components.Dataframe(
                value=leaderboard_df,
                # headers=shown_columns,
                # datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=original_df_qa,
                # headers=COLS,
                # datatype=TYPES,
                visible=False,
            )
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    selected_domains,
                    selected_langs,
                    selected_rerankings,
                    search_bar,
                ],
                leaderboard_table,
            )
            for selector in [
                selected_domains, selected_langs, selected_rerankings
            ]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        selected_domains,
                        selected_langs,
                        selected_rerankings,
                        search_bar,
                    ],
                    leaderboard_table,
                    queue=True,
                )

        with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()