Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 11,757 Bytes
f766ce9 8a1daf9 f766ce9 36c5a0c f766ce9 8a1daf9 36c5a0c f30cbcc f766ce9 e8879cc f766ce9 8a1daf9 f30cbcc 8a1daf9 f30cbcc f766ce9 5808d8f 8a1daf9 f30cbcc 8a1daf9 f766ce9 8ec7973 f766ce9 8ec7973 f766ce9 8ec7973 e8879cc f766ce9 e8879cc f766ce9 e8879cc 8ec7973 8a1daf9 f766ce9 e8879cc f766ce9 8a1daf9 e8879cc f8b3d0f f766ce9 f8b3d0f 8a1daf9 f8b3d0f 5808d8f 61eca2d 5808d8f 61eca2d f8b3d0f f766ce9 5808d8f f30cbcc 8a1daf9 f30cbcc 8ec7973 36c5a0c 2c777fc 36c5a0c 2c777fc 36c5a0c 2c777fc 36c5a0c 8a1daf9 f766ce9 57ca843 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
INTRODUCTION_TEXT,
BENCHMARKS_TEXT,
TITLE,
EVALUATION_QUEUE_TEXT
)
from src.display.css_html_js import custom_css
from src.leaderboard.read_evals import get_raw_eval_results, get_leaderboard_df
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
from utils import update_table, update_metric, update_table_long_doc, upload_file
from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, DOMAIN_COLS_LONG_DOC, LANG_COLS_LONG_DOC, metric_list
def restart_space():
API.restart_space(repo_id=REPO_ID)
# try:
# print(EVAL_RESULTS_PATH)
# snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
# token=TOKEN
# )
# except Exception:
# restart_space()
raw_data = get_raw_eval_results(EVAL_RESULTS_PATH)
original_df_qa = get_leaderboard_df(
raw_data, task='qa', metric='ndcg_at_3')
original_df_long_doc = get_leaderboard_df(
raw_data, task='long_doc', metric='ndcg_at_3')
print(f'raw data: {len(raw_data)}')
print(f'QA data loaded: {original_df_qa.shape}')
print(f'Long-Doc data loaded: {len(original_df_long_doc)}')
leaderboard_df_qa = original_df_qa.copy()
leaderboard_df_long_doc = original_df_long_doc.copy()
def update_metric_qa(
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
):
return update_metric(raw_data, 'qa', metric, domains, langs, reranking_model, query)
def update_metric_long_doc(
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
):
return update_metric(raw_data, 'long_doc', metric, domains, langs, reranking_model, query)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("QA", elem_id="qa-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
# search bar for model name
with gr.Row():
search_bar = gr.Textbox(
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
# select the metric
selected_metric = gr.Dropdown(
choices=metric_list,
value=metric_list[1],
label="Select the metric",
interactive=True,
elem_id="metric-select",
)
with gr.Column(min_width=320):
# select domain
with gr.Row():
selected_domains = gr.CheckboxGroup(
choices=DOMAIN_COLS_QA,
value=DOMAIN_COLS_QA,
label="Select the domains",
elem_id="domain-column-select",
interactive=True,
)
# select language
with gr.Row():
selected_langs = gr.CheckboxGroup(
choices=LANG_COLS_QA,
value=LANG_COLS_QA,
label="Select the languages",
elem_id="language-column-select",
interactive=True
)
# select reranking model
reranking_models = list(frozenset([eval_result.reranking_model for eval_result in raw_data]))
with gr.Row():
selected_rerankings = gr.CheckboxGroup(
choices=reranking_models,
value=reranking_models,
label="Select the reranking models",
elem_id="reranking-select",
interactive=True
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df_qa,
# headers=shown_columns,
# datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=leaderboard_df_qa,
# headers=COLS,
# datatype=TYPES,
visible=False,
)
# Set search_bar listener
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
selected_domains,
selected_langs,
selected_rerankings,
search_bar,
],
leaderboard_table,
)
# Set column-wise listener
for selector in [
selected_domains, selected_langs, selected_rerankings
]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
selected_domains,
selected_langs,
selected_rerankings,
search_bar,
],
leaderboard_table,
queue=True,
)
# set metric listener
selected_metric.change(
update_metric_qa,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings,
search_bar,
],
leaderboard_table,
queue=True
)
with gr.TabItem("Long Doc", elem_id="long-doc-benchmark-tab-table", id=1):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar-long-doc",
)
# select the metric
selected_metric = gr.Dropdown(
choices=metric_list,
value=metric_list[1],
label="Select the metric",
interactive=True,
elem_id="metric-select-long-doc",
)
with gr.Column(min_width=320):
# select domain
with gr.Row():
selected_domains = gr.CheckboxGroup(
choices=DOMAIN_COLS_LONG_DOC,
value=DOMAIN_COLS_LONG_DOC,
label="Select the domains",
elem_id="domain-column-select-long-doc",
interactive=True,
)
# select language
with gr.Row():
selected_langs = gr.CheckboxGroup(
choices=LANG_COLS_LONG_DOC,
value=LANG_COLS_LONG_DOC,
label="Select the languages",
elem_id="language-column-select-long-doc",
interactive=True
)
# select reranking model
reranking_models = list(frozenset([eval_result.reranking_model for eval_result in raw_data]))
with gr.Row():
selected_rerankings = gr.CheckboxGroup(
choices=reranking_models,
value=reranking_models,
label="Select the reranking models",
elem_id="reranking-select-long-doc",
interactive=True
)
leaderboard_table_long_doc = gr.components.Dataframe(
value=leaderboard_df_long_doc,
# headers=shown_columns,
# datatype=TYPES,
elem_id="leaderboard-table-long-doc",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=leaderboard_df_long_doc,
# headers=COLS,
# datatype=TYPES,
visible=False,
)
# Set search_bar listener
search_bar.submit(
update_table_long_doc,
[
hidden_leaderboard_table_for_search,
selected_domains,
selected_langs,
selected_rerankings,
search_bar,
],
leaderboard_table_long_doc,
)
# Set column-wise listener
for selector in [
selected_domains, selected_langs, selected_rerankings
]:
selector.change(
update_table_long_doc,
[
hidden_leaderboard_table_for_search,
selected_domains,
selected_langs,
selected_rerankings,
search_bar,
],
leaderboard_table_long_doc,
queue=True,
)
# set metric listener
selected_metric.change(
update_metric_long_doc,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings,
search_bar,
],
leaderboard_table_long_doc,
queue=True
)
with gr.TabItem("🚀Submit here!", elem_id="submit-tab-table", id=2):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("## ✉️Submit your model here!", elem_classes="markdown-text")
with gr.Row():
file_output = gr.File()
with gr.Row():
upload_button = gr.UploadButton("Click to submit evaluation", file_count="multiple")
upload_button.upload(upload_file, upload_button, file_output)
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text")
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|