Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,669 Bytes
9c49811 36c5a0c 9c49811 f30cbcc 3b83af7 5808d8f 9c49811 f30cbcc 9c49811 f30cbcc 9c49811 f30cbcc 9c49811 f30cbcc 9c49811 f8b3d0f 9c49811 f8b3d0f 5808d8f f30cbcc 5808d8f f30cbcc 5808d8f f30cbcc 36c5a0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import pandas as pd
import os
from src.display.formatting import styled_error, styled_message, styled_warning
from huggingface_hub import HfApi
from src.display.utils import AutoEvalColumnQA, AutoEvalColumnLongDoc, COLS_QA, COLS_LONG_DOC, QA_BENCHMARK_COLS, LONG_DOC_BENCHMARK_COLS
from src.benchmarks import BENCHMARK_COLS_QA, BENCHMARK_COLS_LONG_DOC, BenchmarksQA, BenchmarksLongDoc
from src.leaderboard.read_evals import FullEvalResult, get_leaderboard_df
from typing import List
def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame:
return df.loc[df["Reranking Model"].isin(reranking_query)]
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[
AutoEvalColumnQA.retrieval_model.name,
AutoEvalColumnQA.reranking_model.name,
]
)
return filtered_df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumnQA.retrieval_model.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, domain_query: list, language_query: list, task: str="qa") -> pd.DataFrame:
if task == "qa":
always_here_cols = [
AutoEvalColumnQA.retrieval_model.name,
AutoEvalColumnQA.reranking_model.name,
AutoEvalColumnQA.average.name
]
cols = list(frozenset(COLS_QA).intersection(frozenset(BENCHMARK_COLS_QA)))
elif task == "long_doc":
always_here_cols = [
AutoEvalColumnLongDoc.retrieval_model.name,
AutoEvalColumnLongDoc.reranking_model.name,
AutoEvalColumnLongDoc.average.name
]
cols = list(frozenset(COLS_LONG_DOC).intersection(frozenset(BENCHMARK_COLS_LONG_DOC)))
selected_cols = []
for c in cols:
if c not in df.columns:
continue
if task == "qa":
eval_col = BenchmarksQA[c].value
elif task == "long_doc":
eval_col = BenchmarksLongDoc[c].value
if eval_col.domain not in domain_query:
continue
if eval_col.lang not in language_query:
continue
selected_cols.append(c)
# We use COLS to maintain sorting
filtered_df = df[always_here_cols + selected_cols]
filtered_df[always_here_cols[2]] = filtered_df[selected_cols].mean(axis=1).round(decimals=2)
return filtered_df
def update_table(
hidden_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
):
filtered_df = filter_models(hidden_df, reranking_query)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, domains, langs)
return df
def update_table_long_doc(
hidden_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
):
filtered_df = filter_models(hidden_df, reranking_query)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, domains, langs, task='long_doc')
return df
def update_metric(
raw_data: List[FullEvalResult],
task: str,
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
) -> pd.DataFrame:
if task == 'qa':
leaderboard_df = get_leaderboard_df(raw_data, COLS_QA, QA_BENCHMARK_COLS, task=task, metric=metric)
return update_table(
leaderboard_df,
domains,
langs,
reranking_model,
query
)
elif task == 'long_doc':
leaderboard_df = get_leaderboard_df(raw_data, COLS_LONG_DOC, LONG_DOC_BENCHMARK_COLS, task=task, metric=metric)
return update_table_long_doc(
leaderboard_df,
domains,
langs,
reranking_model,
query
)
def upload_file(files):
file_paths = [file.name for file in files]
print(f"file uploaded: {file_paths}")
# for fp in file_paths:
# # upload the file
# print(file_paths)
# HfApi(token="").upload_file(...)
# os.remove(fp)
return file_paths |