Spaces:
AIR-Bench
/
Running on CPU Upgrade

File size: 4,669 Bytes
9c49811
36c5a0c
 
 
 
 
9c49811
f30cbcc
 
3b83af7
5808d8f
9c49811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f30cbcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c49811
f30cbcc
9c49811
 
f30cbcc
 
 
 
9c49811
 
 
 
 
 
 
f30cbcc
9c49811
 
 
 
 
f8b3d0f
 
9c49811
 
 
 
 
f8b3d0f
5808d8f
 
 
f30cbcc
 
 
 
 
 
 
 
 
 
 
 
 
5808d8f
 
f30cbcc
5808d8f
 
 
 
 
 
f30cbcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36c5a0c
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import pandas as pd
import os

from src.display.formatting import styled_error, styled_message, styled_warning

from huggingface_hub import HfApi

from src.display.utils import AutoEvalColumnQA, AutoEvalColumnLongDoc, COLS_QA, COLS_LONG_DOC, QA_BENCHMARK_COLS, LONG_DOC_BENCHMARK_COLS
from src.benchmarks import BENCHMARK_COLS_QA, BENCHMARK_COLS_LONG_DOC, BenchmarksQA, BenchmarksLongDoc
from src.leaderboard.read_evals import FullEvalResult, get_leaderboard_df
from typing import List


def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame:
    return df.loc[df["Reranking Model"].isin(reranking_query)]


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            filtered_df = filtered_df.drop_duplicates(
                subset=[
                    AutoEvalColumnQA.retrieval_model.name,
                    AutoEvalColumnQA.reranking_model.name,
                ]
            )

    return filtered_df


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumnQA.retrieval_model.name].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, domain_query: list, language_query: list, task: str="qa") -> pd.DataFrame:
    if task == "qa":
        always_here_cols = [
            AutoEvalColumnQA.retrieval_model.name,
            AutoEvalColumnQA.reranking_model.name,
            AutoEvalColumnQA.average.name
        ]
        cols = list(frozenset(COLS_QA).intersection(frozenset(BENCHMARK_COLS_QA)))
    elif task == "long_doc":
        always_here_cols = [
            AutoEvalColumnLongDoc.retrieval_model.name,
            AutoEvalColumnLongDoc.reranking_model.name,
            AutoEvalColumnLongDoc.average.name
        ]
        cols = list(frozenset(COLS_LONG_DOC).intersection(frozenset(BENCHMARK_COLS_LONG_DOC)))
    selected_cols = []
    for c in cols:
        if c not in df.columns:
            continue
        if task == "qa":
            eval_col = BenchmarksQA[c].value
        elif task == "long_doc":
            eval_col = BenchmarksLongDoc[c].value
        if eval_col.domain not in domain_query:
            continue
        if eval_col.lang not in language_query:
            continue
        selected_cols.append(c)
    # We use COLS to maintain sorting
    filtered_df = df[always_here_cols + selected_cols]
    filtered_df[always_here_cols[2]] = filtered_df[selected_cols].mean(axis=1).round(decimals=2)
    return filtered_df


def update_table(
        hidden_df: pd.DataFrame,
        domains: list,
        langs: list,
        reranking_query: list,
        query: str,
):
    filtered_df = filter_models(hidden_df, reranking_query)
    filtered_df = filter_queries(query, filtered_df)
    df = select_columns(filtered_df, domains, langs)
    return df


def update_table_long_doc(
        hidden_df: pd.DataFrame,
        domains: list,
        langs: list,
        reranking_query: list,
        query: str,
):
    filtered_df = filter_models(hidden_df, reranking_query)
    filtered_df = filter_queries(query, filtered_df)
    df = select_columns(filtered_df, domains, langs, task='long_doc')
    return df


def update_metric(
        raw_data: List[FullEvalResult],
        task: str,
        metric: str,
        domains: list,
        langs: list,
        reranking_model: list,
        query: str,
) -> pd.DataFrame:
    if task == 'qa':
        leaderboard_df = get_leaderboard_df(raw_data, COLS_QA, QA_BENCHMARK_COLS, task=task, metric=metric)
        return update_table(
            leaderboard_df,
            domains,
            langs,
            reranking_model,
            query
        )
    elif task == 'long_doc':
        leaderboard_df = get_leaderboard_df(raw_data, COLS_LONG_DOC, LONG_DOC_BENCHMARK_COLS, task=task, metric=metric)
        return update_table_long_doc(
            leaderboard_df,
            domains,
            langs,
            reranking_model,
            query
        )


def upload_file(files):
    file_paths = [file.name for file in files]
    print(f"file uploaded: {file_paths}")
    # for fp in file_paths:
    #     # upload the file
    #     print(file_paths)
    #     HfApi(token="").upload_file(...)
    #     os.remove(fp)
    return file_paths