Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
import os.path | |
from collections import defaultdict | |
from dataclasses import dataclass | |
from typing import List | |
import pandas as pd | |
from src.benchmarks import get_safe_name | |
from src.display.utils import ( | |
COL_NAME_RERANKING_MODEL, | |
COL_NAME_RETRIEVAL_MODEL, | |
COL_NAME_RERANKING_MODEL_LINK, | |
COL_NAME_RETRIEVAL_MODEL_LINK, | |
COL_NAME_REVISION, | |
COL_NAME_TIMESTAMP, | |
COL_NAME_IS_ANONYMOUS, | |
COLS_QA, | |
QA_BENCHMARK_COLS, | |
COLS_LONG_DOC, | |
LONG_DOC_BENCHMARK_COLS, | |
COL_NAME_AVG, | |
COL_NAME_RANK | |
) | |
from src.display.formatting import make_clickable_model | |
def calculate_mean(row): | |
if pd.isna(row).any(): | |
return 0 | |
else: | |
return row.mean() | |
class EvalResult: | |
""" | |
Evaluation result of a single embedding model with a specific reranking model on benchmarks over different | |
domains, languages, and datasets | |
""" | |
eval_name: str # name of the evaluation, [retrieval_model]_[reranking_model]_[metric] | |
retrieval_model: str | |
reranking_model: str | |
results: list # results on all the benchmarks stored as dict | |
task: str | |
metric: str | |
timestamp: str = "" # submission timestamp | |
revision: str = "" | |
is_anonymous: bool = False | |
class FullEvalResult: | |
""" | |
Evaluation result of a single embedding model with a specific reranking model on benchmarks over different tasks | |
""" | |
eval_name: str # name of the evaluation, [retrieval_model]_[reranking_model] | |
retrieval_model: str | |
reranking_model: str | |
retrieval_model_link: str | |
reranking_model_link: str | |
results: List[EvalResult] # results on all the EvalResults over different tasks and metrics. | |
timestamp: str = "" | |
revision: str = "" | |
is_anonymous: bool = False | |
def init_from_json_file(cls, json_filepath): | |
""" | |
Initiate from the result json file for a single model. | |
The json file will be written only when the status is FINISHED. | |
""" | |
with open(json_filepath) as fp: | |
model_data = json.load(fp) | |
# store all the results for different metrics and tasks | |
result_list = [] | |
retrieval_model_link = "" | |
reranking_model_link = "" | |
revision = "" | |
for item in model_data: | |
config = item.get("config", {}) | |
# eval results for different metrics | |
results = item.get("results", []) | |
retrieval_model_link = config["retrieval_model_link"] | |
if config["reranking_model_link"] is None: | |
reranking_model_link = "" | |
else: | |
reranking_model_link = config["reranking_model_link"] | |
eval_result = EvalResult( | |
eval_name=f"{config['retrieval_model']}_{config['reranking_model']}_{config['metric']}", | |
retrieval_model=config["retrieval_model"], | |
reranking_model=config["reranking_model"], | |
results=results, | |
task=config["task"], | |
metric=config["metric"], | |
timestamp=config.get("timestamp", "2024-05-12T12:24:02Z"), | |
revision=config.get("revision", "3a2ba9dcad796a48a02ca1147557724e"), | |
is_anonymous=config.get("is_anonymous", False) | |
) | |
result_list.append(eval_result) | |
return cls( | |
eval_name=f"{result_list[0].retrieval_model}_{result_list[0].reranking_model}", | |
retrieval_model=result_list[0].retrieval_model, | |
reranking_model=result_list[0].reranking_model, | |
retrieval_model_link=retrieval_model_link, | |
reranking_model_link=reranking_model_link, | |
results=result_list, | |
timestamp=result_list[0].timestamp, | |
revision=result_list[0].revision, | |
is_anonymous=result_list[0].is_anonymous | |
) | |
def to_dict(self, task='qa', metric='ndcg_at_3') -> List: | |
""" | |
Convert the results in all the EvalResults over different tasks and metrics. The output is a list of dict compatible with the dataframe UI | |
""" | |
results = defaultdict(dict) | |
for eval_result in self.results: | |
if eval_result.metric != metric: | |
continue | |
if eval_result.task != task: | |
continue | |
results[eval_result.eval_name]["eval_name"] = eval_result.eval_name | |
results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL] = ( | |
make_clickable_model(self.retrieval_model, self.retrieval_model_link)) | |
results[eval_result.eval_name][COL_NAME_RERANKING_MODEL] = ( | |
make_clickable_model(self.reranking_model, self.reranking_model_link)) | |
results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL_LINK] = self.retrieval_model_link | |
results[eval_result.eval_name][COL_NAME_RERANKING_MODEL_LINK] = self.reranking_model_link | |
results[eval_result.eval_name][COL_NAME_REVISION] = self.revision | |
results[eval_result.eval_name][COL_NAME_TIMESTAMP] = self.timestamp | |
results[eval_result.eval_name][COL_NAME_IS_ANONYMOUS] = self.is_anonymous | |
# print(f'result loaded: {eval_result.eval_name}') | |
for result in eval_result.results: | |
# add result for each domain, language, and dataset | |
domain = result["domain"] | |
lang = result["lang"] | |
dataset = result["dataset"] | |
value = result["value"] * 100 | |
if dataset == 'default': | |
benchmark_name = f"{domain}_{lang}" | |
else: | |
benchmark_name = f"{domain}_{lang}_{dataset}" | |
results[eval_result.eval_name][get_safe_name(benchmark_name)] = value | |
return [v for v in results.values()] | |
def get_raw_eval_results(results_path: str) -> List[FullEvalResult]: | |
""" | |
Load the evaluation results from a json file | |
""" | |
model_result_filepaths = [] | |
for root, dirs, files in os.walk(results_path): | |
if len(files) == 0: | |
continue | |
# select the latest results | |
for file in files: | |
if not (file.startswith("results") and file.endswith(".json")): | |
print(f'skip {file}') | |
continue | |
model_result_filepaths.append(os.path.join(root, file)) | |
eval_results = {} | |
for model_result_filepath in model_result_filepaths: | |
# create evaluation results | |
try: | |
eval_result = FullEvalResult.init_from_json_file(model_result_filepath) | |
except UnicodeDecodeError as e: | |
print(f"loading file failed. {model_result_filepath}") | |
continue | |
print(f'file loaded: {model_result_filepath}') | |
eval_name = eval_result.eval_name | |
eval_results[eval_name] = eval_result | |
results = [] | |
for k, v in eval_results.items(): | |
try: | |
v.to_dict() | |
results.append(v) | |
except KeyError: | |
print(f"loading failed: {k}") | |
continue | |
return results | |
def get_leaderboard_df(raw_data: List[FullEvalResult], task: str, metric: str) -> pd.DataFrame: | |
""" | |
Creates a dataframe from all the individual experiment results | |
""" | |
cols = [COL_NAME_IS_ANONYMOUS, ] | |
if task == "qa": | |
cols += COLS_QA | |
benchmark_cols = QA_BENCHMARK_COLS | |
elif task == "long-doc": | |
cols += COLS_LONG_DOC | |
benchmark_cols = LONG_DOC_BENCHMARK_COLS | |
else: | |
raise NotImplemented | |
all_data_json = [] | |
for v in raw_data: | |
all_data_json += v.to_dict(task=task, metric=metric) | |
df = pd.DataFrame.from_records(all_data_json) | |
# print(f'dataframe created: {df.shape}') | |
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list())) | |
# calculate the average score for selected benchmarks | |
df[COL_NAME_AVG] = df[list(_benchmark_cols)].apply(calculate_mean, axis=1).round(decimals=2) | |
df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True) | |
df.reset_index(inplace=True, drop=True) | |
_cols = frozenset(cols).intersection(frozenset(df.columns.to_list())) | |
df = df[_cols].round(decimals=2) | |
# filter out if any of the benchmarks have not been produced | |
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min") | |
# shorten the revision | |
df[COL_NAME_REVISION] = df[COL_NAME_REVISION].str[:6] | |
return df | |