Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import hashlib | |
import json | |
import re | |
from datetime import datetime, timezone | |
from pathlib import Path | |
import pandas as pd | |
from src.benchmarks import LongDocBenchmarks, QABenchmarks | |
from src.columns import ( | |
COL_NAME_AVG, | |
COL_NAME_IS_ANONYMOUS, | |
COL_NAME_RANK, | |
COL_NAME_RERANKING_MODEL, | |
COL_NAME_RETRIEVAL_MODEL, | |
COL_NAME_REVISION, | |
COL_NAME_TIMESTAMP, | |
get_default_col_names_and_types, | |
get_fixed_col_names_and_types, | |
) | |
from src.envs import API, LATEST_BENCHMARK_VERSION, SEARCH_RESULTS_REPO | |
from src.models import TaskType, get_safe_name | |
def calculate_mean(row): | |
if pd.isna(row).any(): | |
return -1 | |
else: | |
return row.mean() | |
def remove_html(input_str): | |
# Regular expression for finding HTML tags | |
clean = re.sub(r"<.*?>", "", input_str) | |
return clean | |
def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame: | |
if not reranking_query: | |
return df | |
else: | |
return df.loc[df[COL_NAME_RERANKING_MODEL].apply(remove_html).isin(reranking_query)] | |
def filter_queries(query: str, df: pd.DataFrame) -> pd.DataFrame: | |
filtered_df = df.copy() | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
filtered_df = filtered_df.drop_duplicates( | |
subset=[ | |
COL_NAME_RETRIEVAL_MODEL, | |
COL_NAME_RERANKING_MODEL, | |
] | |
) | |
return filtered_df | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df[COL_NAME_RETRIEVAL_MODEL].str.contains(query, case=False))] | |
def get_default_cols(task: TaskType, version_slug, add_fix_cols: bool = True) -> tuple: | |
cols = [] | |
types = [] | |
if task == TaskType.qa: | |
benchmarks = QABenchmarks[version_slug] | |
elif task == TaskType.long_doc: | |
benchmarks = LongDocBenchmarks[version_slug] | |
else: | |
raise NotImplementedError | |
cols_list, types_list = get_default_col_names_and_types(benchmarks) | |
benchmark_list = [c.value.col_name for c in list(benchmarks.value)] | |
for col_name, col_type in zip(cols_list, types_list): | |
if col_name not in benchmark_list: | |
continue | |
cols.append(col_name) | |
types.append(col_type) | |
if add_fix_cols: | |
_cols = [] | |
_types = [] | |
fixed_cols, fixed_cols_types = get_fixed_col_names_and_types() | |
for col_name, col_type in zip(cols, types): | |
if col_name in fixed_cols: | |
continue | |
_cols.append(col_name) | |
_types.append(col_type) | |
cols = fixed_cols + _cols | |
types = fixed_cols_types + _types | |
return cols, types | |
def get_selected_cols(task, version_slug, domains, languages): | |
cols, _ = get_default_cols(task=task, version_slug=version_slug, add_fix_cols=False) | |
selected_cols = [] | |
for c in cols: | |
if task == TaskType.qa: | |
eval_col = QABenchmarks[version_slug].value[c].value | |
elif task == TaskType.long_doc: | |
eval_col = LongDocBenchmarks[version_slug].value[c].value | |
else: | |
raise NotImplementedError | |
if eval_col.domain not in domains: | |
continue | |
if eval_col.lang not in languages: | |
continue | |
selected_cols.append(c) | |
# We use COLS to maintain sorting | |
return selected_cols | |
def select_columns( | |
df: pd.DataFrame, | |
domains: list, | |
languages: list, | |
task: TaskType = TaskType.qa, | |
reset_ranking: bool = True, | |
version_slug: str = None, | |
) -> pd.DataFrame: | |
selected_cols = get_selected_cols( | |
task, version_slug, domains, languages) | |
fixed_cols, _ = get_fixed_col_names_and_types() | |
filtered_df = df[fixed_cols + selected_cols] | |
filtered_df.replace({"": pd.NA}, inplace=True) | |
if reset_ranking: | |
filtered_df[COL_NAME_AVG] = \ | |
filtered_df[selected_cols].apply(calculate_mean, axis=1).round(decimals=2) | |
filtered_df.sort_values( | |
by=[COL_NAME_AVG], ascending=False, inplace=True) | |
filtered_df.reset_index(inplace=True, drop=True) | |
filtered_df = reset_rank(filtered_df) | |
return filtered_df | |
def _update_df_elem( | |
task: TaskType, | |
version: str, | |
source_df: pd.DataFrame, | |
domains: list, | |
langs: list, | |
reranking_query: list, | |
query: str, | |
show_anonymous: bool, | |
reset_ranking: bool = True, | |
show_revision_and_timestamp: bool = False, | |
): | |
filtered_df = source_df.copy() | |
if not show_anonymous: | |
filtered_df = filtered_df[~filtered_df[COL_NAME_IS_ANONYMOUS]] | |
filtered_df = filter_models(filtered_df, reranking_query) | |
filtered_df = filter_queries(query, filtered_df) | |
filtered_df = select_columns(filtered_df, domains, langs, task, reset_ranking, get_safe_name(version)) | |
if not show_revision_and_timestamp: | |
filtered_df.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True) | |
return filtered_df | |
def update_doc_df_elem( | |
version: str, | |
hidden_df: pd.DataFrame, | |
domains: list, | |
langs: list, | |
reranking_query: list, | |
query: str, | |
show_anonymous: bool, | |
show_revision_and_timestamp: bool = False, | |
reset_ranking: bool = True, | |
): | |
return _update_df_elem( | |
TaskType.long_doc, | |
version, | |
hidden_df, | |
domains, | |
langs, | |
reranking_query, | |
query, | |
show_anonymous, | |
reset_ranking, | |
show_revision_and_timestamp, | |
) | |
def update_metric( | |
datastore, | |
task: TaskType, | |
metric: str, | |
domains: list, | |
langs: list, | |
reranking_model: list, | |
query: str, | |
show_anonymous: bool = False, | |
show_revision_and_timestamp: bool = False, | |
) -> pd.DataFrame: | |
if task == TaskType.qa: | |
update_func = update_qa_df_elem | |
elif task == TaskType.long_doc: | |
update_func = update_doc_df_elem | |
else: | |
raise NotImplementedError | |
df_elem = get_leaderboard_df(datastore, task=task, metric=metric) | |
version = datastore.version | |
return update_func( | |
version, | |
df_elem, | |
domains, | |
langs, | |
reranking_model, | |
query, | |
show_anonymous, | |
show_revision_and_timestamp, | |
) | |
def upload_file(filepath: str): | |
if not filepath.endswith(".zip"): | |
print(f"file uploading aborted. wrong file type: {filepath}") | |
return filepath | |
return filepath | |
def get_iso_format_timestamp(): | |
# Get the current timestamp with UTC as the timezone | |
current_timestamp = datetime.now(timezone.utc) | |
# Remove milliseconds by setting microseconds to zero | |
current_timestamp = current_timestamp.replace(microsecond=0) | |
# Convert to ISO 8601 format and replace the offset with 'Z' | |
iso_format_timestamp = current_timestamp.isoformat().replace("+00:00", "Z") | |
filename_friendly_timestamp = current_timestamp.strftime("%Y%m%d%H%M%S") | |
return iso_format_timestamp, filename_friendly_timestamp | |
def calculate_file_md5(file_path): | |
md5 = hashlib.md5() | |
with open(file_path, "rb") as f: | |
while True: | |
data = f.read(4096) | |
if not data: | |
break | |
md5.update(data) | |
return md5.hexdigest() | |
def submit_results( | |
filepath: str, | |
model: str, | |
model_url: str, | |
reranking_model: str = "", | |
reranking_model_url: str = "", | |
version: str = LATEST_BENCHMARK_VERSION, | |
is_anonymous=False, | |
): | |
if not filepath.endswith(".zip"): | |
return styled_error(f"file uploading aborted. wrong file type: {filepath}") | |
# validate model | |
if not model: | |
return styled_error("failed to submit. Model name can not be empty.") | |
# validate model url | |
if not is_anonymous: | |
if not model_url.startswith("https://") and not model_url.startswith("http://"): | |
# TODO: retrieve the model page and find the model name on the page | |
return styled_error( | |
f"failed to submit. Model url must start with `https://` or `http://`. Illegal model url: {model_url}" | |
) | |
if reranking_model != "NoReranker": | |
if not reranking_model_url.startswith("https://") and not reranking_model_url.startswith("http://"): | |
return styled_error( | |
f"failed to submit. Model url must start with `https://` or `http://`. Illegal model url: {model_url}" | |
) | |
# rename the uploaded file | |
input_fp = Path(filepath) | |
revision = calculate_file_md5(filepath) | |
timestamp_config, timestamp_fn = get_iso_format_timestamp() | |
output_fn = f"{timestamp_fn}-{revision}.zip" | |
input_folder_path = input_fp.parent | |
if not reranking_model: | |
reranking_model = "NoReranker" | |
API.upload_file( | |
path_or_fileobj=filepath, | |
path_in_repo=f"{version}/{model}/{reranking_model}/{output_fn}", | |
repo_id=SEARCH_RESULTS_REPO, | |
repo_type="dataset", | |
commit_message=f"feat: submit {model} to evaluate", | |
) | |
output_config_fn = f"{output_fn.removesuffix('.zip')}.json" | |
output_config = { | |
"model_name": f"{model}", | |
"model_url": f"{model_url}", | |
"reranker_name": f"{reranking_model}", | |
"reranker_url": f"{reranking_model_url}", | |
"version": f"{version}", | |
"is_anonymous": is_anonymous, | |
"revision": f"{revision}", | |
"timestamp": f"{timestamp_config}", | |
} | |
with open(input_folder_path / output_config_fn, "w") as f: | |
json.dump(output_config, f, indent=4, ensure_ascii=False) | |
API.upload_file( | |
path_or_fileobj=input_folder_path / output_config_fn, | |
path_in_repo=f"{version}/{model}/{reranking_model}/{output_config_fn}", | |
repo_id=SEARCH_RESULTS_REPO, | |
repo_type="dataset", | |
commit_message=f"feat: submit {model} + {reranking_model} config", | |
) | |
return styled_message( | |
f"Thanks for submission!\n" | |
f"Retrieval method: {model}\nReranking model: {reranking_model}\nSubmission revision: {revision}" | |
) | |
def reset_rank(df): | |
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min") | |
return df | |
def get_leaderboard_df(datastore, task: TaskType, metric: str) -> pd.DataFrame: | |
""" | |
Creates a dataframe from all the individual experiment results | |
""" | |
# load the selected metrics into a DataFrame from the raw json | |
all_data_json = [] | |
for v in datastore.raw_data: | |
all_data_json += v.to_dict(task=task.value, metric=metric) | |
df = pd.DataFrame.from_records(all_data_json) | |
# calculate the average scores for selected task | |
if task == TaskType.qa: | |
benchmarks = QABenchmarks[datastore.slug] | |
elif task == TaskType.long_doc: | |
benchmarks = LongDocBenchmarks[datastore.slug] | |
else: | |
raise NotImplementedError | |
valid_cols = frozenset(df.columns.to_list()) | |
benchmark_cols = [] | |
for t in list(benchmarks.value): | |
if t.value.col_name not in valid_cols: | |
continue | |
benchmark_cols.append(t.value.col_name) | |
## filter out the columns that are not in the data | |
df[COL_NAME_AVG] = ( | |
df[list(benchmark_cols)] | |
.apply(calculate_mean, axis=1) | |
.round(decimals=2) | |
) | |
df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True) | |
df.reset_index(inplace=True, drop=True) | |
# filter out columns that are not in the data | |
display_cols = [COL_NAME_IS_ANONYMOUS, COL_NAME_AVG] | |
default_cols, _ = get_default_col_names_and_types(benchmarks) | |
for col in default_cols: | |
if col in valid_cols: | |
display_cols.append(col) | |
df = df[display_cols].round(decimals=2) | |
# rank the scores | |
df = reset_rank(df) | |
# shorten the revision | |
df[COL_NAME_REVISION] = df[COL_NAME_REVISION].str[:6] | |
return df | |
def set_listeners( | |
task: TaskType, | |
target_df, | |
source_df, | |
search_bar, | |
version, | |
selected_domains, | |
selected_langs, | |
selected_rerankings, | |
show_anonymous, | |
show_revision_and_timestamp, | |
): | |
if task == TaskType.qa: | |
update_table_func = update_qa_df_elem | |
elif task == TaskType.long_doc: | |
update_table_func = update_doc_df_elem | |
else: | |
raise NotImplementedError | |
selector_list = [selected_domains, selected_langs, selected_rerankings, search_bar, show_anonymous] | |
search_bar_args = [ | |
source_df, | |
version, | |
] + selector_list | |
selector_args = ( | |
[version, source_df] | |
+ selector_list | |
+ [ | |
show_revision_and_timestamp, | |
] | |
) | |
# Set search_bar listener | |
search_bar.submit(update_table_func, search_bar_args, target_df) | |
# Set column-wise listener | |
for selector in selector_list: | |
selector.change( | |
update_table_func, | |
selector_args, | |
target_df, | |
queue=True, | |
) | |
def update_qa_df_elem( | |
version: str, | |
hidden_df: pd.DataFrame, | |
domains: list, | |
langs: list, | |
reranking_query: list, | |
query: str, | |
show_anonymous: bool, | |
show_revision_and_timestamp: bool = False, | |
reset_ranking: bool = True, | |
): | |
return _update_df_elem( | |
TaskType.qa, | |
version, | |
hidden_df, | |
domains, | |
langs, | |
reranking_query, | |
query, | |
show_anonymous, | |
reset_ranking, | |
show_revision_and_timestamp, | |
) | |
def styled_error(error): | |
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>" | |
def styled_message(message): | |
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>" | |