Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from pathlib import Path | |
from src.models import FullEvalResult | |
from src.read_evals import load_raw_eval_results | |
from src.utils import get_leaderboard_df | |
cur_fp = Path(__file__) | |
def test_init_from_json_file(): | |
json_fp = cur_fp.parents[2] / "toydata" / "test_data.json" | |
full_eval_result = FullEvalResult.init_from_json_file(json_fp) | |
num_different_task_domain_lang_metric_dataset_combination = 6 | |
assert len(full_eval_result.results) == num_different_task_domain_lang_metric_dataset_combination | |
assert full_eval_result.retrieval_model == "bge-m3" | |
assert full_eval_result.reranking_model == "bge-reranker-v2-m3" | |
def test_to_dict(): | |
json_fp = cur_fp.parents[2] / "toydata" / "test_data.json" | |
full_eval_result = FullEvalResult.init_from_json_file(json_fp) | |
result_list = full_eval_result.to_dict(task="qa", metric="ndcg_at_1") | |
assert len(result_list) == 1 | |
result_dict = result_list[0] | |
assert result_dict["Retrieval Model"] == "bge-m3" | |
assert result_dict["Reranking Model"] == "bge-reranker-v2-m3" | |
assert result_dict["wiki_en"] is not None | |
assert result_dict["wiki_zh"] is not None | |
def test_get_raw_eval_results(): | |
results_path = cur_fp.parents[2] / "toydata" / "eval_results" / "AIR-Bench_24.04" | |
results = load_raw_eval_results(results_path) | |
# only load the latest results | |
assert len(results) == 4 | |
assert results[0].eval_name == "bge-base-en-v1.5_NoReranker" | |
assert len(results[0].results) == 70 | |
assert results[0].eval_name == "bge-base-en-v1.5_bge-reranker-v2-m3" | |
assert len(results[1].results) == 70 | |
def test_get_leaderboard_df(): | |
results_path = cur_fp.parents[2] / "toydata" / "eval_results" / "AIR-Bench_24.04" | |
raw_data = load_raw_eval_results(results_path) | |
df = get_leaderboard_df(raw_data, "qa", "ndcg_at_10") | |
assert df.shape[0] == 4 | |
# the results contain only one embedding model | |
# for i in range(4): | |
# assert df["Retrieval Model"][i] == "bge-m3" | |
# # the results contain only two reranking model | |
# assert df["Reranking Model"][0] == "bge-reranker-v2-m3" | |
# assert df["Reranking Model"][1] == "NoReranker" | |
# assert df["Average ⬆️"][0] > df["Average ⬆️"][1] | |
# assert not df[['Average ⬆️', 'wiki_en', 'wiki_zh', ]].isnull().values.any() | |
def test_get_leaderboard_df_long_doc(): | |
results_path = cur_fp.parents[2] / "toydata" / "test_results" | |
raw_data = load_raw_eval_results(results_path) | |
df = get_leaderboard_df(raw_data, "long-doc", "ndcg_at_1") | |
assert df.shape[0] == 2 | |
# the results contain only one embedding model | |
for i in range(2): | |
assert df["Retrieval Model"][i] == "bge-m3" | |
# the results contains only two reranking model | |
assert df["Reranking Model"][0] == "bge-reranker-v2-m3" | |
assert df["Reranking Model"][1] == "NoReranker" | |
assert df["Average ⬆️"][0] > df["Average ⬆️"][1] | |
assert ( | |
not df[ | |
[ | |
"Average ⬆️", | |
"law_en_lex_files_500k_600k", | |
] | |
] | |
.isnull() | |
.values.any() | |
) | |