Spaces:
AIR-Bench
/
Running on CPU Upgrade

leaderboard / tests /src /test_read_evals.py
nan's picture
refactor: reformat with black
ec8e2d4
raw
history blame
3.09 kB
from pathlib import Path
from src.models import FullEvalResult
from src.read_evals import load_raw_eval_results
from src.utils import get_leaderboard_df
cur_fp = Path(__file__)
def test_init_from_json_file():
json_fp = cur_fp.parents[2] / "toydata" / "test_data.json"
full_eval_result = FullEvalResult.init_from_json_file(json_fp)
num_different_task_domain_lang_metric_dataset_combination = 6
assert len(full_eval_result.results) == num_different_task_domain_lang_metric_dataset_combination
assert full_eval_result.retrieval_model == "bge-m3"
assert full_eval_result.reranking_model == "bge-reranker-v2-m3"
def test_to_dict():
json_fp = cur_fp.parents[2] / "toydata" / "test_data.json"
full_eval_result = FullEvalResult.init_from_json_file(json_fp)
result_list = full_eval_result.to_dict(task="qa", metric="ndcg_at_1")
assert len(result_list) == 1
result_dict = result_list[0]
assert result_dict["Retrieval Model"] == "bge-m3"
assert result_dict["Reranking Model"] == "bge-reranker-v2-m3"
assert result_dict["wiki_en"] is not None
assert result_dict["wiki_zh"] is not None
def test_get_raw_eval_results():
results_path = cur_fp.parents[2] / "toydata" / "eval_results" / "AIR-Bench_24.04"
results = load_raw_eval_results(results_path)
# only load the latest results
assert len(results) == 4
assert results[0].eval_name == "bge-base-en-v1.5_NoReranker"
assert len(results[0].results) == 70
assert results[0].eval_name == "bge-base-en-v1.5_bge-reranker-v2-m3"
assert len(results[1].results) == 70
def test_get_leaderboard_df():
results_path = cur_fp.parents[2] / "toydata" / "eval_results" / "AIR-Bench_24.04"
raw_data = load_raw_eval_results(results_path)
df = get_leaderboard_df(raw_data, "qa", "ndcg_at_10")
assert df.shape[0] == 4
# the results contain only one embedding model
# for i in range(4):
# assert df["Retrieval Model"][i] == "bge-m3"
# # the results contain only two reranking model
# assert df["Reranking Model"][0] == "bge-reranker-v2-m3"
# assert df["Reranking Model"][1] == "NoReranker"
# assert df["Average ⬆️"][0] > df["Average ⬆️"][1]
# assert not df[['Average ⬆️', 'wiki_en', 'wiki_zh', ]].isnull().values.any()
def test_get_leaderboard_df_long_doc():
results_path = cur_fp.parents[2] / "toydata" / "test_results"
raw_data = load_raw_eval_results(results_path)
df = get_leaderboard_df(raw_data, "long-doc", "ndcg_at_1")
assert df.shape[0] == 2
# the results contain only one embedding model
for i in range(2):
assert df["Retrieval Model"][i] == "bge-m3"
# the results contains only two reranking model
assert df["Reranking Model"][0] == "bge-reranker-v2-m3"
assert df["Reranking Model"][1] == "NoReranker"
assert df["Average ⬆️"][0] > df["Average ⬆️"][1]
assert (
not df[
[
"Average ⬆️",
"law_en_lex_files_500k_600k",
]
]
.isnull()
.values.any()
)