Spaces:
AIR-Bench
/
Running on CPU Upgrade

leaderboard / app.py
nan's picture
feat: add v2024.05
2bce3f3
raw
history blame
23 kB
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
INTRODUCTION_TEXT,
BENCHMARKS_TEXT,
TITLE,
EVALUATION_QUEUE_TEXT
)
from src.benchmarks import (
DOMAIN_COLS_QA,
LANG_COLS_QA,
DOMAIN_COLS_LONG_DOC,
LANG_COLS_LONG_DOC,
METRIC_LIST,
DEFAULT_METRIC_QA,
DEFAULT_METRIC_LONG_DOC
)
from src.display.css_html_js import custom_css
from src.display.utils import (
COL_NAME_IS_ANONYMOUS,
COL_NAME_REVISION,
COL_NAME_TIMESTAMP,
COL_NAME_RERANKING_MODEL,
COL_NAME_RETRIEVAL_MODEL
)
from src.envs import (
API,
EVAL_RESULTS_PATH,
REPO_ID,
RESULTS_REPO,
TOKEN,
BM25_LINK,
BENCHMARK_VERSION_LIST,
LATEST_BENCHMARK_VERSION
)
from src.read_evals import (
get_raw_eval_results,
get_leaderboard_df
)
from src.utils import (
update_metric,
upload_file,
get_default_cols,
submit_results,
reset_rank,
remove_html
)
from src.display.gradio_formatting import (
get_version_dropdown,
get_search_bar,
get_reranking_dropdown,
get_metric_dropdown,
get_domain_dropdown,
get_language_dropdown,
get_anonymous_checkbox,
get_revision_and_ts_checkbox,
get_leaderboard_table,
get_noreranking_dropdown
)
from src.display.gradio_listener import set_listeners
def restart_space():
API.restart_space(repo_id=REPO_ID)
try:
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
token=TOKEN
)
except Exception as e:
print(f'failed to download')
restart_space()
raw_data = get_raw_eval_results(f"{EVAL_RESULTS_PATH}/{LATEST_BENCHMARK_VERSION}")
original_df_qa = get_leaderboard_df(
raw_data, task='qa', metric=DEFAULT_METRIC_QA)
original_df_long_doc = get_leaderboard_df(
raw_data, task='long-doc', metric=DEFAULT_METRIC_LONG_DOC)
print(f'raw data: {len(raw_data)}')
print(f'QA data loaded: {original_df_qa.shape}')
print(f'Long-Doc data loaded: {len(original_df_long_doc)}')
leaderboard_df_qa = original_df_qa.copy()
# leaderboard_df_qa = leaderboard_df_qa[has_no_nan_values(df, _benchmark_cols)]
shown_columns_qa, types_qa = get_default_cols(
'qa', leaderboard_df_qa.columns, add_fix_cols=True)
leaderboard_df_qa = leaderboard_df_qa[~leaderboard_df_qa[COL_NAME_IS_ANONYMOUS]][shown_columns_qa]
leaderboard_df_qa.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
leaderboard_df_long_doc = original_df_long_doc.copy()
shown_columns_long_doc, types_long_doc = get_default_cols(
'long-doc', leaderboard_df_long_doc.columns, add_fix_cols=True)
leaderboard_df_long_doc = leaderboard_df_long_doc[~leaderboard_df_long_doc[COL_NAME_IS_ANONYMOUS]][shown_columns_long_doc]
leaderboard_df_long_doc.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
# select reranking model
reranking_models = sorted(list(frozenset([eval_result.reranking_model for eval_result in raw_data])))
def update_metric_qa(
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
show_anonymous: bool,
show_revision_and_timestamp,
):
return update_metric(raw_data, 'qa', metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp)
def update_metric_long_doc(
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
show_anonymous: bool,
show_revision_and_timestamp,
):
return update_metric(raw_data, "long-doc", metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("Results", elem_id="results-tab-table"):
with gr.Row():
selected_version = get_version_dropdown()
with gr.TabItem("QA", elem_id="qa-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column(min_width=320):
# select domain
with gr.Row():
selected_domains = get_domain_dropdown(DOMAIN_COLS_QA, DOMAIN_COLS_QA)
# select language
with gr.Row():
selected_langs = get_language_dropdown(LANG_COLS_QA, LANG_COLS_QA)
with gr.Column():
# select the metric
selected_metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC_QA)
with gr.Row():
show_anonymous = get_anonymous_checkbox()
with gr.Row():
show_revision_and_timestamp = get_revision_and_ts_checkbox()
with gr.Tabs(elem_classes="tab-buttons") as sub_tabs:
with gr.TabItem("Retrieval + Reranking", id=10):
with gr.Row():
# search retrieval models
with gr.Column():
search_bar = get_search_bar()
# select reranking models
with gr.Column():
selected_rerankings = get_reranking_dropdown(reranking_models)
leaderboard_table = get_leaderboard_table(leaderboard_df_qa, types_qa)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = get_leaderboard_table(original_df_qa, types_qa, visible=False)
set_listeners(
"qa",
leaderboard_table,
hidden_leaderboard_table_for_search,
search_bar,
selected_domains,
selected_langs,
selected_rerankings,
show_anonymous,
show_revision_and_timestamp,
)
# set metric listener
selected_metric.change(
update_metric_qa,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings,
search_bar,
show_anonymous,
show_revision_and_timestamp,
],
leaderboard_table,
queue=True
)
with gr.TabItem("Retrieval Only", id=11):
with gr.Row():
with gr.Column(scale=1):
search_bar_retriever = get_search_bar()
with gr.Column(scale=1):
selected_noreranker = get_noreranking_dropdown()
lb_df_retriever = leaderboard_df_qa[leaderboard_df_qa[COL_NAME_RERANKING_MODEL] == "NoReranker"]
lb_df_retriever = reset_rank(lb_df_retriever)
lb_table_retriever = get_leaderboard_table(lb_df_retriever, types_qa)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_lb_df_retriever = original_df_qa[original_df_qa[COL_NAME_RERANKING_MODEL] == "NoReranker"]
hidden_lb_df_retriever = reset_rank(hidden_lb_df_retriever)
hidden_lb_table_retriever = get_leaderboard_table(hidden_lb_df_retriever, types_qa, visible=False)
set_listeners(
"qa",
lb_table_retriever,
hidden_lb_table_retriever,
search_bar_retriever,
selected_domains,
selected_langs,
selected_noreranker,
show_anonymous,
show_revision_and_timestamp,
)
# set metric listener
selected_metric.change(
update_metric_qa,
[
selected_metric,
selected_domains,
selected_langs,
selected_noreranker,
search_bar_retriever,
show_anonymous,
show_revision_and_timestamp,
],
lb_table_retriever,
queue=True
)
with gr.TabItem("Reranking Only", id=12):
lb_df_reranker = leaderboard_df_qa[leaderboard_df_qa[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK]
lb_df_reranker = reset_rank(lb_df_reranker)
reranking_models_reranker = lb_df_reranker[COL_NAME_RERANKING_MODEL].apply(remove_html).unique().tolist()
with gr.Row():
with gr.Column(scale=1):
selected_rerankings_reranker = get_reranking_dropdown(reranking_models_reranker)
with gr.Column(scale=1):
search_bar_reranker = gr.Textbox(show_label=False, visible=False)
lb_table_reranker = get_leaderboard_table(lb_df_reranker, types_qa)
hidden_lb_df_reranker = original_df_qa[original_df_qa[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK]
hidden_lb_df_reranker = reset_rank(hidden_lb_df_reranker)
hidden_lb_table_reranker = get_leaderboard_table(
hidden_lb_df_reranker, types_qa, visible=False
)
set_listeners(
"qa",
lb_table_reranker,
hidden_lb_table_reranker,
search_bar_reranker,
selected_domains,
selected_langs,
selected_rerankings_reranker,
show_anonymous,
show_revision_and_timestamp,
)
# set metric listener
selected_metric.change(
update_metric_qa,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings_reranker,
search_bar_reranker,
show_anonymous,
show_revision_and_timestamp,
],
lb_table_reranker,
queue=True
)
with gr.TabItem("Long Doc", elem_id="long-doc-benchmark-tab-table", id=1):
with gr.Row():
with gr.Column(min_width=320):
# select domain
with gr.Row():
selected_domains = get_domain_dropdown(DOMAIN_COLS_LONG_DOC, DOMAIN_COLS_LONG_DOC)
# select language
with gr.Row():
selected_langs = get_language_dropdown(
LANG_COLS_LONG_DOC, LANG_COLS_LONG_DOC
)
with gr.Column():
# select the metric
with gr.Row():
selected_metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC_LONG_DOC)
with gr.Row():
show_anonymous = get_anonymous_checkbox()
with gr.Row():
show_revision_and_timestamp = get_revision_and_ts_checkbox()
with gr.Tabs(elem_classes="tab-buttons") as sub_tabs:
with gr.TabItem("Retrieval + Reranking", id=20):
with gr.Row():
with gr.Column():
search_bar = get_search_bar()
# select reranking model
with gr.Column():
selected_rerankings = get_reranking_dropdown(reranking_models)
lb_table = get_leaderboard_table(
leaderboard_df_long_doc, types_long_doc
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_lb_table_for_search = get_leaderboard_table(
original_df_long_doc, types_long_doc, visible=False
)
set_listeners(
"long-doc",
lb_table,
hidden_lb_table_for_search,
search_bar,
selected_domains,
selected_langs,
selected_rerankings,
show_anonymous,
show_revision_and_timestamp,
)
# set metric listener
selected_metric.change(
update_metric_long_doc,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings,
search_bar,
show_anonymous,
show_revision_and_timestamp
],
lb_table,
queue=True
)
with gr.TabItem("Retrieval Only", id=21):
with gr.Row():
with gr.Column(scale=1):
search_bar_retriever = get_search_bar()
with gr.Column(scale=1):
selected_noreranker = get_noreranking_dropdown()
lb_df_retriever_long_doc = leaderboard_df_long_doc[
leaderboard_df_long_doc[COL_NAME_RERANKING_MODEL] == "NoReranker"
]
lb_df_retriever_long_doc = reset_rank(lb_df_retriever_long_doc)
hidden_lb_db_retriever_long_doc = original_df_long_doc[
original_df_long_doc[COL_NAME_RERANKING_MODEL] == "NoReranker"
]
hidden_lb_db_retriever_long_doc = reset_rank(hidden_lb_db_retriever_long_doc)
lb_table_retriever_long_doc = get_leaderboard_table(
lb_df_retriever_long_doc, types_long_doc)
hidden_lb_table_retriever_long_doc = get_leaderboard_table(
hidden_lb_db_retriever_long_doc, types_long_doc, visible=False
)
set_listeners(
"long-doc",
lb_table_retriever_long_doc,
hidden_lb_table_retriever_long_doc,
search_bar_retriever,
selected_domains,
selected_langs,
selected_noreranker,
show_anonymous,
show_revision_and_timestamp,
)
selected_metric.change(
update_metric_long_doc,
[
selected_metric,
selected_domains,
selected_langs,
selected_noreranker,
search_bar_retriever,
show_anonymous,
show_revision_and_timestamp,
],
lb_table_retriever_long_doc,
queue=True
)
with gr.TabItem("Reranking Only", id=22):
lb_df_reranker_ldoc = leaderboard_df_long_doc[
leaderboard_df_long_doc[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK
]
lb_df_reranker_ldoc = reset_rank(lb_df_reranker_ldoc)
reranking_models_reranker_ldoc = lb_df_reranker_ldoc[COL_NAME_RERANKING_MODEL].apply(remove_html).unique().tolist()
with gr.Row():
with gr.Column(scale=1):
selected_rerankings_reranker_ldoc = get_reranking_dropdown(reranking_models_reranker_ldoc)
with gr.Column(scale=1):
search_bar_reranker_ldoc = gr.Textbox(show_label=False, visible=False)
lb_table_reranker_ldoc = get_leaderboard_table(lb_df_reranker_ldoc, types_long_doc)
hidden_lb_df_reranker_ldoc = original_df_long_doc[original_df_long_doc[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK]
hidden_lb_df_reranker_ldoc = reset_rank(hidden_lb_df_reranker_ldoc)
hidden_lb_table_reranker_ldoc = get_leaderboard_table(
hidden_lb_df_reranker_ldoc, types_long_doc, visible=False
)
set_listeners(
"long-doc",
lb_table_reranker_ldoc,
hidden_lb_table_reranker_ldoc,
search_bar_reranker_ldoc,
selected_domains,
selected_langs,
selected_rerankings_reranker_ldoc,
show_anonymous,
show_revision_and_timestamp,
)
selected_metric.change(
update_metric_long_doc,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings_reranker_ldoc,
search_bar_reranker_ldoc,
show_anonymous,
show_revision_and_timestamp,
],
lb_table_reranker_ldoc,
queue=True
)
with gr.TabItem("🚀Submit here!", elem_id="submit-tab-table", id=2):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("## ✉️Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name = gr.Textbox(label="Retrieval Method name")
with gr.Column():
model_url = gr.Textbox(label="Retrieval Method URL")
with gr.Row():
with gr.Column():
reranking_model_name = gr.Textbox(
label="Reranking Model name",
info="Optional",
value="NoReranker"
)
with gr.Column():
reranking_model_url = gr.Textbox(
label="Reranking Model URL",
info="Optional",
value=""
)
with gr.Row():
with gr.Column():
benchmark_version = gr.Dropdown(
BENCHMARK_VERSION_LIST,
value=LATEST_BENCHMARK_VERSION,
interactive=True,
label="AIR-Bench Version")
with gr.Row():
upload_button = gr.UploadButton("Click to upload search results", file_count="single")
with gr.Row():
file_output = gr.File()
with gr.Row():
is_anonymous = gr.Checkbox(
label="Nope. I want to submit anonymously 🥷",
value=False,
info="Do you want to shown on the leaderboard by default?")
with gr.Row():
submit_button = gr.Button("Submit")
with gr.Row():
submission_result = gr.Markdown()
upload_button.upload(
upload_file,
[
upload_button,
],
file_output)
submit_button.click(
submit_results,
[
file_output,
model_name,
model_url,
reranking_model_name,
reranking_model_url,
benchmark_version,
is_anonymous
],
submission_result,
show_progress="hidden"
)
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text")
if __name__ == "__main__":
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40)
demo.launch()