import json import hashlib from datetime import datetime, timezone from pathlib import Path from typing import List import pandas as pd from src.benchmarks import BENCHMARK_COLS_QA, BENCHMARK_COLS_LONG_DOC, BenchmarksQA, BenchmarksLongDoc from src.display.formatting import styled_message, styled_error from src.display.utils import COLS_QA, TYPES_QA, COLS_LONG_DOC, TYPES_LONG_DOC, COL_NAME_RANK, COL_NAME_AVG, \ COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL, COL_NAME_IS_ANONYMOUS, get_default_auto_eval_column_dict from src.envs import API, SEARCH_RESULTS_REPO from src.read_evals import FullEvalResult, get_leaderboard_df, calculate_mean import re def remove_html(input_str): # Regular expression for finding HTML tags clean = re.sub(r'<.*?>', '', input_str) return clean def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame: return df.loc[df[COL_NAME_RERANKING_MODEL].apply(remove_html).isin(reranking_query)] def filter_queries(query: str, df: pd.DataFrame) -> pd.DataFrame: filtered_df = df.copy() final_df = [] if query != "": queries = [q.strip() for q in query.split(";")] for _q in queries: _q = _q.strip() if _q != "": temp_filtered_df = search_table(filtered_df, _q) if len(temp_filtered_df) > 0: final_df.append(temp_filtered_df) if len(final_df) > 0: filtered_df = pd.concat(final_df) filtered_df = filtered_df.drop_duplicates( subset=[ COL_NAME_RETRIEVAL_MODEL, COL_NAME_RERANKING_MODEL, ] ) return filtered_df def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: return df[(df[COL_NAME_RETRIEVAL_MODEL].str.contains(query, case=False))] def get_default_cols(task: str, columns: list=[], add_fix_cols: bool=True) -> list: cols = [] types = [] if task == "qa": cols_list = COLS_QA types_list = TYPES_QA benchmark_list = BENCHMARK_COLS_QA elif task == "long-doc": cols_list = COLS_LONG_DOC types_list = TYPES_LONG_DOC benchmark_list = BENCHMARK_COLS_LONG_DOC else: raise NotImplemented for col_name, col_type in zip(cols_list, types_list): if col_name not in benchmark_list: continue if len(columns) > 0 and col_name not in columns: continue cols.append(col_name) types.append(col_type) if add_fix_cols: _cols = [] _types = [] for col_name, col_type in zip(cols, types): if col_name in FIXED_COLS: continue _cols.append(col_name) _types.append(col_type) cols = FIXED_COLS + _cols types = FIXED_COLS_TYPES + _types return cols, types fixed_cols = get_default_auto_eval_column_dict()[:-3] FIXED_COLS = [c.name for _, _, c in fixed_cols] FIXED_COLS_TYPES = [c.type for _, _, c in fixed_cols] def select_columns(df: pd.DataFrame, domain_query: list, language_query: list, task: str = "qa") -> pd.DataFrame: cols, _ = get_default_cols(task=task, columns=df.columns, add_fix_cols=False) selected_cols = [] for c in cols: if task == "qa": eval_col = BenchmarksQA[c].value elif task == "long-doc": eval_col = BenchmarksLongDoc[c].value if eval_col.domain not in domain_query: continue if eval_col.lang not in language_query: continue selected_cols.append(c) # We use COLS to maintain sorting filtered_df = df[FIXED_COLS + selected_cols] filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].apply(calculate_mean, axis=1).round(decimals=2) filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True) filtered_df.reset_index(inplace=True, drop=True) filtered_df[COL_NAME_RANK] = filtered_df[COL_NAME_AVG].rank(ascending=False, method="min") return filtered_df def update_table( hidden_df: pd.DataFrame, domains: list, langs: list, reranking_query: list, query: str, show_anonymous: bool ): filtered_df = hidden_df.copy() if not show_anonymous: filtered_df = filtered_df[~filtered_df[COL_NAME_IS_ANONYMOUS]] filtered_df = filter_models(filtered_df, reranking_query) filtered_df = filter_queries(query, filtered_df) return select_columns(filtered_df, domains, langs, task='qa') def update_table_long_doc( hidden_df: pd.DataFrame, domains: list, langs: list, reranking_query: list, query: str, show_anonymous: bool ): filtered_df = hidden_df if not show_anonymous: filtered_df = filtered_df[~filtered_df[COL_NAME_IS_ANONYMOUS]] filtered_df = filter_models(filtered_df, reranking_query) filtered_df = filter_queries(query, filtered_df) df = select_columns(filtered_df, domains, langs, task='long-doc') return df def update_metric( raw_data: List[FullEvalResult], task: str, metric: str, domains: list, langs: list, reranking_model: list, query: str, show_anonymous: bool = False ) -> pd.DataFrame: if task == 'qa': leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric) return update_table( leaderboard_df, domains, langs, reranking_model, query, show_anonymous ) elif task == "long-doc": leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric) return update_table_long_doc( leaderboard_df, domains, langs, reranking_model, query, show_anonymous ) def upload_file(filepath: str): if not filepath.endswith(".zip"): print(f"file uploading aborted. wrong file type: {filepath}") return filepath return filepath from huggingface_hub import ModelCard from huggingface_hub.utils import EntryNotFoundError def get_iso_format_timestamp(): # Get the current timestamp with UTC as the timezone current_timestamp = datetime.now(timezone.utc) # Remove milliseconds by setting microseconds to zero current_timestamp = current_timestamp.replace(microsecond=0) # Convert to ISO 8601 format and replace the offset with 'Z' iso_format_timestamp = current_timestamp.isoformat().replace('+00:00', 'Z') filename_friendly_timestamp = current_timestamp.strftime('%Y%m%d%H%M%S') return iso_format_timestamp, filename_friendly_timestamp def calculate_file_md5(file_path): md5 = hashlib.md5() with open(file_path, 'rb') as f: while True: data = f.read(4096) if not data: break md5.update(data) return md5.hexdigest() def submit_results(filepath: str, model: str, model_url: str, reranker: str, reranker_url: str, version: str = "AIR-Bench_24.04", is_anonymous=False): if not filepath.endswith(".zip"): return styled_error(f"file uploading aborted. wrong file type: {filepath}") # validate model if not model: return styled_error("failed to submit. Model name can not be empty.") # validate model url if not is_anonymous: if not model_url.startswith("https://") and not model_url.startswith("http://"): # TODO: retrieve the model page and find the model name on the page return styled_error( f"failed to submit. Model url must start with `https://` or `http://`. Illegal model url: {model_url}") if model_url.startswith("https://huggingface.co/"): # validate model card repo_id = model_url.removeprefix("https://huggingface.co/") try: card = ModelCard.load(repo_id) except EntryNotFoundError as e: return styled_error( f"failed to submit. Model url must be a link to a valid HuggingFace model on HuggingFace space. Could not get model {repo_id}") # rename the uploaded file input_fp = Path(filepath) revision = calculate_file_md5(filepath) timestamp_config, timestamp_fn = get_iso_format_timestamp() output_fn = f"{timestamp_fn}-{revision}.zip" input_folder_path = input_fp.parent if not reranker: reranker = 'NoReranker' API.upload_file( path_or_fileobj=filepath, path_in_repo=f"{version}/{model}/{reranker}/{output_fn}", repo_id=SEARCH_RESULTS_REPO, repo_type="dataset", commit_message=f"feat: submit {model} to evaluate") output_config_fn = f"{output_fn.removesuffix('.zip')}.json" output_config = { "model_name": f"{model}", "model_url": f"{model_url}", "reranker_name": f"{reranker}", "reranker_url": f"{reranker_url}", "version": f"{version}", "is_anonymous": is_anonymous, "revision": f"{revision}", "timestamp": f"{timestamp_config}" } with open(input_folder_path / output_config_fn, "w") as f: json.dump(output_config, f, indent=4, ensure_ascii=False) API.upload_file( path_or_fileobj=input_folder_path / output_config_fn, path_in_repo=f"{version}/{model}/{reranker}/{output_config_fn}", repo_id=SEARCH_RESULTS_REPO, repo_type="dataset", commit_message=f"feat: submit {model} + {reranker} config") return styled_message( f"Thanks for submission!\nSubmission revision: {revision}" )