import streamlit as st import os import json import re import datasets import tiktoken import zipfile from pathlib import Path # 定义 tiktoken 编码器 encoding = tiktoken.get_encoding("cl100k_base") # MGTHuman 类 class MGTHuman(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="human", version=VERSION, description="This part of human data"), datasets.BuilderConfig(name="Moonshot", version=VERSION, description="Data from the Moonshot model"), datasets.BuilderConfig(name="gpt35", version=VERSION, description="Data from the gpt-3.5-turbo model"), datasets.BuilderConfig(name="Llama3", version=VERSION, description="Data from the Llama3 model"), datasets.BuilderConfig(name="Mixtral", version=VERSION, description="Data from the Mixtral model"), datasets.BuilderConfig(name="Qwen", version=VERSION, description="Data from the Qwen model"), ] DEFAULT_CONFIG_NAME = "human" def truncate_text(self, text, max_tokens=2048): tokens = encoding.encode(text, allowed_special={'<|endoftext|>'}) if len(tokens) > max_tokens: tokens = tokens[:max_tokens] truncated_text = encoding.decode(tokens) last_period_idx = truncated_text.rfind('。') if last_period_idx == -1: last_period_idx = truncated_text.rfind('.') if last_period_idx != -1: truncated_text = truncated_text[:last_period_idx + 1] return truncated_text else: return text def get_text_by_index(self, filepath, index): count = 0 for file in filepath: with open(file, 'r') as f: data = json.load(f) for row in data: if not row["text"].strip(): continue if count == index: text = self.truncate_text(row["text"], max_tokens=2048) return text count += 1 return "Index 超出范围,请输入有效的数字。" # Streamlit UI st.title("MGTHuman Dataset Viewer") # 文件夹上传 uploaded_folder = st.file_uploader("上传包含 JSON 文件的 ZIP 文件夹", type=["zip"]) if uploaded_folder: folder_path = Path("temp") folder_path.mkdir(exist_ok=True) zip_path = folder_path / uploaded_folder.name with open(zip_path, "wb") as f: f.write(uploaded_folder.getbuffer()) with zipfile.ZipFile(zip_path, 'r') as zip_ref: zip_ref.extractall(folder_path) # 获取解压后的所有 JSON 文件路径 json_files = list(folder_path.glob("*.json")) # 选择数据配置 config_name = st.selectbox("选择数据配置", ["human", "Moonshot", "gpt35", "Llama3", "Mixtral", "Qwen"]) mgt_human = MGTHuman(name=config_name) # 输入序号查看文本 index_to_view = st.number_input("输入要查看的文本序号", min_value=0, step=1) if st.button("显示文本"): text = mgt_human.get_text_by_index(json_files, index=index_to_view) st.write("对应的文本内容为:", text) # 清理上传文件的临时目录 if st.button("清除文件"): import shutil shutil.rmtree("temp") st.write("临时文件已清除。")