VaianiLorenzo
commited on
Commit
•
6640fa0
1
Parent(s):
998d998
Update app.py
Browse files
app.py
CHANGED
@@ -249,8 +249,10 @@ class CLIPDemo:
|
|
249 |
def draw_text(
|
250 |
key,
|
251 |
plot=False,
|
|
|
252 |
):
|
253 |
|
|
|
254 |
image = Image.open("data/logo.png")
|
255 |
st.image(image, use_column_width="always")
|
256 |
|
@@ -259,7 +261,7 @@ def draw_text(
|
|
259 |
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
|
260 |
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True)
|
261 |
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
|
262 |
-
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
|
263 |
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH + "/*.jpeg")[:1000])
|
264 |
st.session_state["model"] = model
|
265 |
|
@@ -302,13 +304,12 @@ def draw_text(
|
|
302 |
def draw_audio(
|
303 |
key,
|
304 |
plot=False,
|
|
|
305 |
):
|
306 |
|
307 |
image = Image.open("data/logo.png")
|
308 |
st.image(image, use_column_width="always")
|
309 |
|
310 |
-
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
311 |
-
|
312 |
if 'model' not in st.session_state:
|
313 |
#with st.spinner('We are orginizing your traks...'):
|
314 |
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
|
@@ -371,6 +372,7 @@ def draw_audio(
|
|
371 |
def draw_camera(
|
372 |
key,
|
373 |
plot=False,
|
|
|
374 |
):
|
375 |
|
376 |
image = Image.open("data/logo.png")
|
@@ -381,7 +383,7 @@ def draw_camera(
|
|
381 |
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
|
382 |
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True)
|
383 |
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
|
384 |
-
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
|
385 |
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH + "/*.jpeg")[:5000])
|
386 |
st.session_state["model"] = model
|
387 |
#st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
|
@@ -429,15 +431,17 @@ def draw_camera(
|
|
429 |
selected = streamlit_menu(example=3)
|
430 |
df = pd.read_csv('full_metadata.csv', index_col=False)
|
431 |
|
|
|
|
|
432 |
if selected == "Text":
|
433 |
# st.title(f"You have selected {selected}")
|
434 |
-
draw_text("text", plot=True)
|
435 |
if selected == "Audio":
|
436 |
# st.title(f"You have selected {selected}")
|
437 |
-
draw_audio("audio", plot=True)
|
438 |
if selected == "Camera":
|
439 |
# st.title(f"You have selected {selected}")
|
440 |
-
#draw_camera("camera", plot=True)
|
441 |
pass
|
442 |
|
443 |
# with st.sidebar:
|
|
|
249 |
def draw_text(
|
250 |
key,
|
251 |
plot=False,
|
252 |
+
device=None,
|
253 |
):
|
254 |
|
255 |
+
|
256 |
image = Image.open("data/logo.png")
|
257 |
st.image(image, use_column_width="always")
|
258 |
|
|
|
261 |
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
|
262 |
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True)
|
263 |
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
|
264 |
+
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer, device=device)
|
265 |
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH + "/*.jpeg")[:1000])
|
266 |
st.session_state["model"] = model
|
267 |
|
|
|
304 |
def draw_audio(
|
305 |
key,
|
306 |
plot=False,
|
307 |
+
device=None,
|
308 |
):
|
309 |
|
310 |
image = Image.open("data/logo.png")
|
311 |
st.image(image, use_column_width="always")
|
312 |
|
|
|
|
|
313 |
if 'model' not in st.session_state:
|
314 |
#with st.spinner('We are orginizing your traks...'):
|
315 |
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
|
|
|
372 |
def draw_camera(
|
373 |
key,
|
374 |
plot=False,
|
375 |
+
device=None,
|
376 |
):
|
377 |
|
378 |
image = Image.open("data/logo.png")
|
|
|
383 |
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
|
384 |
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True)
|
385 |
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
|
386 |
+
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer, device=device)
|
387 |
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH + "/*.jpeg")[:5000])
|
388 |
st.session_state["model"] = model
|
389 |
#st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
|
|
|
431 |
selected = streamlit_menu(example=3)
|
432 |
df = pd.read_csv('full_metadata.csv', index_col=False)
|
433 |
|
434 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
435 |
+
|
436 |
if selected == "Text":
|
437 |
# st.title(f"You have selected {selected}")
|
438 |
+
draw_text("text", plot=True, device=device)
|
439 |
if selected == "Audio":
|
440 |
# st.title(f"You have selected {selected}")
|
441 |
+
draw_audio("audio", plot=True, device=device)
|
442 |
if selected == "Camera":
|
443 |
# st.title(f"You have selected {selected}")
|
444 |
+
#draw_camera("camera", plot=True, device=device)
|
445 |
pass
|
446 |
|
447 |
# with st.sidebar:
|