Spaces:
Running
Running
# We will use this file to create a dataloader for the real and fake dataset | |
import os | |
import json | |
import torch | |
from torchvision import transforms | |
from torch.utils.data import DataLoader, Dataset | |
from PIL import Image | |
import numpy as np | |
import pandas as pd | |
import cv2 | |
import cv2 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import pywt | |
class Extracted_Frames_Dataset(Dataset): | |
def __init__(self, root_dir, split = "train", transform = None, extend = 'None', multi_modal = "dct"): | |
""" | |
Args: | |
returns: | |
""" | |
AssertionError(split in ["train", "val", "test"]), "Split must be one of (train, val, test)" | |
self.multi_modal = multi_modal | |
self.root_dir = root_dir | |
self.split = split | |
self.transform = transform | |
if extend == 'faceswap': | |
self.dataset = pd.read_csv(os.path.join(root_dir, f"faceswap_extended_{self.split}.csv")) | |
elif extend == 'fsgan': | |
self.dataset = pd.read_csv(os.path.join(root_dir, f"fsgan_extended_{self.split}.csv")) | |
else: | |
self.dataset = pd.read_csv(os.path.join(root_dir, f"{self.split}.csv")) | |
def __len__(self): | |
return len(self.dataset) | |
def __getitem__(self, idx): | |
sample_input = self.get_sample_input(idx) | |
return sample_input | |
def get_sample_input(self, idx): | |
rgb_image = self.get_rgb_image(idx) | |
label = self.get_label(idx) | |
if self.multi_modal == "dct": | |
dct_image = self.get_dct_image(idx) | |
sample_input = {"rgb_image": rgb_image, "dct_image": dct_image, "label": label} | |
# dct_image = self.get_dct_image(idx) | |
elif self.multi_modal == "fft": | |
fft_image = self.get_fft_image(idx) | |
sample_input = {"rgb_image": rgb_image, "dct_image": fft_image, "label": label} | |
elif self.multi_modal == "hh": | |
hh_image = self.get_hh_image(idx) | |
sample_input = {"rgb_image": rgb_image, "dct_image": hh_image, "label": label} | |
else: | |
AssertionError("multi_modal must be one of (dct:discrete cosine transform, fft: fast forier transform, hh)") | |
return sample_input | |
def get_fft_image(self, idx): | |
gray_image_path = self.dataset.iloc[idx, 0] | |
gray_image = cv2.imread(gray_image_path, cv2.IMREAD_GRAYSCALE) | |
fft_image = self.compute_fft(gray_image) | |
if self.transform: | |
fft_image = self.transform(fft_image) | |
return fft_image | |
def compute_fft(self, image): | |
f = np.fft.fft2(image) | |
fshift = np.fft.fftshift(f) | |
magnitude_spectrum = 20 * np.log(np.abs(fshift) + 1) # Add 1 to avoid log(0) | |
return magnitude_spectrum | |
def get_hh_image(self, idx): | |
gray_image_path = self.dataset.iloc[idx, 0] | |
gray_image = cv2.imread(gray_image_path, cv2.IMREAD_GRAYSCALE) | |
hh_image = self.compute_hh(gray_image) | |
if self.transform: | |
hh_image = self.transform(hh_image) | |
return hh_image | |
def compute_hh(self, image): | |
coeffs2 = pywt.dwt2(image, 'haar') | |
LL, (LH, HL, HH) = coeffs2 | |
return HH | |
def get_rgb_image(self, idx): | |
rgb_image_path = self.dataset.iloc[idx, 0] | |
rgb_image = Image.open(rgb_image_path) | |
if self.transform: | |
rgb_image = self.transform(rgb_image) | |
return rgb_image | |
def get_dct_image(self, idx): | |
rgb_image_path = self.dataset.iloc[idx, 0] | |
rgb_image = cv2.imread(rgb_image_path) | |
dct_image = self.compute_dct_color(rgb_image) | |
if self.transform: | |
dct_image = self.transform(dct_image) | |
return dct_image | |
def get_label(self, idx): | |
return self.dataset.iloc[idx, 1] | |
def compute_dct_color(self, image): | |
image_float = np.float32(image) | |
dct_image = np.zeros_like(image_float) | |
for i in range(3): | |
dct_image[:, :, i] = cv2.dct(image_float[:, :, i]) | |
return dct_image | |