import gradio as gr from transformers import pipeline from PIL import Image import os def load_images_from_current_directory(): images = [] current_directory = os.getcwd() for filename in os.listdir(current_directory): if filename.endswith(".jpg") or filename.endswith(".png"): img_path = os.path.join(current_directory, filename) img = Image.open(img_path) if img is not None: images.append(img) return images # Example: Load images from the current directory example_images = load_images_from_current_directory() # Define the image classification function def classify_image(image): try: # Convert the Gradio image input (which is a NumPy array) to a PIL image image = Image.fromarray(image) # Create the image classification pipeline img_class = pipeline( "image-classification", model="AMfeta99/vit-base-oxford-brain-tumor" ) # Perform image classification results = img_class(image) # Find the result with the highest score max_score_result = max(results, key=lambda x: x['score']) # Extract the predicted label predictions = max_score_result['label'] if predictions==1: text_pred='Tumor' else: text_pred='Normal' return text_pred except Exception as e: # Handle any errors that occur during classification return f"Error: {str(e)}" # Define the Gradio interface image = gr.Image() label = gr.Label(num_top_classes=1) title = "Brain Tumor X-ray Classification" description = "Worried about whether your brain scan is normal or not? Upload your x-ray and the algorithm will give you an expert opinion. Check out [the original algorithm](https://huggingface.co/AMfeta99/vit-base-oxford-brain-tumor) that this demo is based off of." article = "
Image Classification | Demo Model
" # Prepare examples with loaded images examples = [] for img in example_images: examples.append([np.array(img), os.path.basename(os.path.splitext(img.filename)[0])]) demo = gr.Interface(fn=classify_image, inputs=image, outputs=label, description=description, article=article, title=title, examples=examples) # Launch the Gradio interface demo.launch()