Spaces:
Sleeping
Sleeping
Anwar11234
commited on
Commit
·
d823dd2
1
Parent(s):
1a06b7c
first commit
Browse files- Dockerfile +14 -0
- preprocessed_data.pkl +3 -0
- recommender.py +35 -0
- requirements.txt +4 -0
Dockerfile
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use the official Python 3.10.9 image
|
2 |
+
FROM python:3.10.9
|
3 |
+
|
4 |
+
# Copy the current directory contents into the container at .
|
5 |
+
COPY . .
|
6 |
+
|
7 |
+
# Set the working directory to /
|
8 |
+
WORKDIR /
|
9 |
+
|
10 |
+
# Install requirements.txt
|
11 |
+
RUN pip install --no-cache-dir --upgrade -r /requirements.txt
|
12 |
+
|
13 |
+
# Start the FastAPI app on port 7860, the default port expected by Spaces
|
14 |
+
CMD ["uvicorn", "recommender:app", "--host", "0.0.0.0", "--port", "7860"]
|
preprocessed_data.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b741a71fb861485395ecea86b14ff7b5e190bed8da5b06fc9feb841bcf3ef355
|
3 |
+
size 67792
|
recommender.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Body
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
with open('preprocessed_data.pkl', 'rb') as f:
|
5 |
+
tfidf_matrix, cosine_sim_tfidf, df, indices = pickle.load(f)
|
6 |
+
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
@app.post("/recommendations")
|
10 |
+
def recommend(course_data: dict = Body(...)):
|
11 |
+
idx = indices.get(course_data["title"])
|
12 |
+
|
13 |
+
# Handle cases where the course title is not found
|
14 |
+
if idx is None:
|
15 |
+
return {"message": "Course not found."}
|
16 |
+
|
17 |
+
# Get the pairwise similarity scores of all courses with that course
|
18 |
+
sim_scores = list(enumerate(cosine_sim_tfidf[idx]))
|
19 |
+
|
20 |
+
# Sort the courses based on the similarity scores
|
21 |
+
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
|
22 |
+
|
23 |
+
# Get the scores of the 10 most similar courses
|
24 |
+
sim_scores = sim_scores[1:11]
|
25 |
+
|
26 |
+
# Get the course indices
|
27 |
+
course_indices = [i[0] for i in sim_scores]
|
28 |
+
|
29 |
+
recommendations = df.iloc[course_indices][['CourseID', 'Title']].to_dict(orient='records')
|
30 |
+
|
31 |
+
return recommendations
|
32 |
+
|
33 |
+
if __name__ == "__main__":
|
34 |
+
import uvicorn
|
35 |
+
uvicorn.run("recommender:app", host="0.0.0.0", port=3000)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
scipy
|
4 |
+
pandas
|