InstaSoyjak / app.py
AP123's picture
Update app.py
1364b7b verified
raw
history blame
2.39 kB
import gradio as gr
import torch
from PIL import Image
from diffusers import AutoPipelineForText2Image, DDIMScheduler
from transformers import CLIPVisionModelWithProjection
import numpy as np
import spaces
# Initialize the image encoder and pipeline outside the function
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
subfolder="models/image_encoder",
torch_dtype=torch.float16,
)
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
image_encoder=image_encoder,
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"])
pipeline.enable_model_cpu_offload()
@spaces.GPU
def transform_image(face_image, soy_strength, face_strength):
generator = torch.Generator(device="cpu").manual_seed(0)
if isinstance(face_image, Image.Image):
processed_face_image = face_image
elif isinstance(face_image, np.ndarray):
processed_face_image = Image.fromarray(face_image)
else:
raise ValueError("Unsupported image format")
style_image_path = "examples/soyjak2.jpg"
style_image = Image.open(style_image_path)
# Set the IP adapter scale dynamically based on the sliders
pipeline.set_ip_adapter_scale([soy_strength, face_strength])
image = pipeline(
prompt="soyjak",
ip_adapter_image=[style_image, processed_face_image],
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
num_inference_steps=50,
generator=generator,
).images[0]
return image
# Gradio interface setup with dynamic sliders
demo = gr.Interface(
fn=transform_image,
inputs=[
gr.Image(label="Upload your face image"),
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.7, label="Soy Strength"),
gr.Slider(minimum=0, maximum=1, step=0.05, value=1.0, label="Face Strength") # Renamed to Face Strength
],
outputs=gr.Image(label="Your Soyjak"),
title="InstaSoyjak - turn anyone into a Soyjak",
description="All you need to do is upload an image and adjust the strengths. **Please use responsibly.**",
)
demo.queue(max_size=20)
demo.launch()