InstaSoyjak / app.py
AP123's picture
Update app.py
6dca801 verified
raw
history blame
2.5 kB
import gradio as gr
import torch
from PIL import Image
from diffusers import AutoPipelineForText2Image, DDIMScheduler
import numpy as np
import spaces # Make sure to import spaces
# Initialize the pipeline without specifying the device; this will be handled by the @spaces.GPU decorator
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
)
# Configure the scheduler for the pipeline
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
# Load IP adapter with specified weights and set the scale for each component
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name=[
"ip-adapter-plus_sdxl_vit-h.safetensors",
"ip-adapter-plus-face_sdxl_vit-h.safetensors"
]
)
pipeline.set_ip_adapter_scale([0.7, 0.5])
# Decorate the transform_image function to run on GPU
@spaces.GPU
def transform_image(face_image):
# Move the pipeline to GPU inside the function
pipeline.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(0)
# Process the input face image
if isinstance(face_image, Image.Image):
processed_face_image = face_image
elif isinstance(face_image, np.ndarray):
processed_face_image = Image.fromarray(face_image)
else:
raise ValueError("Unsupported image format")
# Load the style image from the local path
style_image_path = "./examples/soyjak2.jpeg"
style_image = Image.open(style_image_path)
# Perform the transformation using the configured pipeline
image = pipeline(
prompt="soyjak",
ip_adapter_image=[style_image, processed_face_image],
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
num_inference_steps=50,
generator=generator,
).images[0]
# Move the pipeline back to CPU after processing to release GPU resources
pipeline.to("cpu")
return image
# Gradio interface setup
demo = gr.Interface(
fn=transform_image,
inputs=gr.Image(label="Upload your face image"),
outputs=gr.Image(label="Your Soyjak"),
title="InstaSoyjak - turn anyone into a Soyjak",
description="All you need to do is upload an image. Please use responsibly. Please follow me on Twitter if you like this space: https://twitter.com/angrypenguinPNG. Idea from Yacine, please give him a follow: https://twitter.com/yacineMTB.",
)
demo.queue(max_size=20)
demo.launch()