InstaSoyjak / app.py
AP123's picture
Update app.py
a826a95 verified
raw
history blame
2.72 kB
import gradio as gr
import torch
from PIL import Image
from diffusers import AutoPipelineForText2Image, DDIMScheduler
from transformers import CLIPVisionModelWithProjection
import numpy as np
import spaces # Make sure to import spaces
# Initialize the pipeline without specifying the device; this will be handled by the @spaces.GPU decorator
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
)
# Configure the scheduler for the pipeline
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
# Load IP adapter with specified weights and set the scale for each component
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name=[
"ip-adapter-plus_sdxl_vit-h.safetensors",
"ip-adapter-plus-face_sdxl_vit-h.safetensors"
]
)
pipeline.set_ip_adapter_scale([0.7, 0.5])
# Ensure the model and its components are moved to GPU
pipeline.to("cuda")
# Define the desired size
desired_size = (1024, 1024)
@spaces.GPU
def transform_image(face_image):
generator = torch.Generator(device="cuda").manual_seed(0)
# Process the input face image
if isinstance(face_image, Image.Image):
processed_face_image = face_image
elif isinstance(face_image, np.ndarray):
processed_face_image = Image.fromarray(face_image)
else:
raise ValueError("Unsupported image format")
# Resize the face image
processed_face_image = processed_face_image.resize(desired_size, Image.LANCZOS)
# Load and resize the style image from the local path
style_image_path = "examples/soyjak2.jpeg"
style_image = Image.open(style_image_path).resize(desired_size, Image.LANCZOS)
# Perform the transformation using the configured pipeline
image = pipeline(
prompt="soyjak",
ip_adapter_image=[style_image, processed_face_image],
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
num_inference_steps=30,
generator=generator,
).images[0]
# Move the pipeline back to CPU after processing to release GPU resources
pipeline.to("cpu")
return image
# Gradio interface setup
demo = gr.Interface(
fn=transform_image,
inputs=gr.Image(label="Upload your face image"),
outputs=gr.Image(label="Your Soyjak"),
title="InstaSoyjak - turn anyone into a Soyjak",
description="All you need to do is upload an image. Please use responsibly. Please follow me on Twitter if you like this space: https://twitter.com/angrypenguinPNG. Idea from Yacine, please give him a follow: https://twitter.com/yacineMTB.",
)
demo.queue(max_size=20)
demo.launch()