AP123 commited on
Commit
2571a09
·
verified ·
1 Parent(s): 2c69f2f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -0
app.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from PIL import Image
4
+ from diffusers import AutoPipelineForText2Image, DDIMScheduler
5
+ from transformers import CLIPVisionModelWithProjection
6
+ import numpy as np
7
+ import spaces # Ensure this is available in your environment
8
+
9
+ # Initialize a zero tensor for demonstration purposes
10
+ zero = torch.Tensor([0]).cuda()
11
+ print(zero.device) # Should output 'cuda:0' if a GPU is available
12
+
13
+ @spaces.GPU # Decorate the function to run on GPU
14
+ def transform_image(face_image):
15
+ print(zero.device) # Check the device inside the function, should be 'cuda:0'
16
+
17
+ generator = torch.Generator(device="cuda").manual_seed(0) # Use GPU device if available
18
+
19
+ # Process the input face image
20
+ if isinstance(face_image, Image.Image):
21
+ processed_face_image = face_image
22
+ elif isinstance(face_image, np.ndarray):
23
+ processed_face_image = Image.fromarray(face_image)
24
+ else:
25
+ raise ValueError("Unsupported image format")
26
+
27
+ # Load the style image from the local path
28
+ style_image_path = "/content/soyjak2.jpeg"
29
+ style_image = Image.open(style_image_path)
30
+
31
+ # Perform the transformation using the GPU
32
+ image = pipeline(
33
+ prompt="soyjak",
34
+ ip_adapter_image=[style_image, processed_face_image],
35
+ negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
36
+ num_inference_steps=30,
37
+ generator=generator,
38
+ ).images[0]
39
+
40
+ return image
41
+
42
+ # Load models and configure pipeline with GPU support
43
+ pipeline = AutoPipelineForText2Image.from_pretrained(
44
+ "stabilityai/stable-diffusion-xl-base-1.0",
45
+ torch_dtype=torch.float16, # Consider using torch.float32 for GPU computations
46
+ device="cuda", # Use GPU device if available
47
+ ).to("cuda") # Ensure the model is moved to GPU
48
+
49
+ # Additional pipeline configurations
50
+ pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config).to("cuda")
51
+ pipeline.enable_model_cpu_offload(False) # Consider not offloading to CPU when using GPU
52
+
53
+ # Gradio interface setup
54
+ demo = gr.Interface(
55
+ fn=transform_image,
56
+ inputs=gr.Image(label="Upload your face image"),
57
+ outputs=gr.Image(label="Your Soyjak"),
58
+ title="InstaSoyjak - turn anyone into a Soyjak",
59
+ description="All you need to do is upload an image. Please use responsibly. Please follow me on Twitter if you like this space: https://twitter.com/angrypenguinPNG. Idea from Yacine, please give him a follow: https://twitter.com/yacineMTB.",
60
+ )
61
+
62
+ demo.launch()