Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from diffusers import AutoPipelineForText2Image, DDIMScheduler
|
5 |
+
from transformers import CLIPVisionModelWithProjection
|
6 |
+
import numpy as np
|
7 |
+
import spaces # Ensure this is available in your environment
|
8 |
+
|
9 |
+
# Initialize a zero tensor for demonstration purposes
|
10 |
+
zero = torch.Tensor([0]).cuda()
|
11 |
+
print(zero.device) # Should output 'cuda:0' if a GPU is available
|
12 |
+
|
13 |
+
@spaces.GPU # Decorate the function to run on GPU
|
14 |
+
def transform_image(face_image):
|
15 |
+
print(zero.device) # Check the device inside the function, should be 'cuda:0'
|
16 |
+
|
17 |
+
generator = torch.Generator(device="cuda").manual_seed(0) # Use GPU device if available
|
18 |
+
|
19 |
+
# Process the input face image
|
20 |
+
if isinstance(face_image, Image.Image):
|
21 |
+
processed_face_image = face_image
|
22 |
+
elif isinstance(face_image, np.ndarray):
|
23 |
+
processed_face_image = Image.fromarray(face_image)
|
24 |
+
else:
|
25 |
+
raise ValueError("Unsupported image format")
|
26 |
+
|
27 |
+
# Load the style image from the local path
|
28 |
+
style_image_path = "/content/soyjak2.jpeg"
|
29 |
+
style_image = Image.open(style_image_path)
|
30 |
+
|
31 |
+
# Perform the transformation using the GPU
|
32 |
+
image = pipeline(
|
33 |
+
prompt="soyjak",
|
34 |
+
ip_adapter_image=[style_image, processed_face_image],
|
35 |
+
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
|
36 |
+
num_inference_steps=30,
|
37 |
+
generator=generator,
|
38 |
+
).images[0]
|
39 |
+
|
40 |
+
return image
|
41 |
+
|
42 |
+
# Load models and configure pipeline with GPU support
|
43 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
44 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
45 |
+
torch_dtype=torch.float16, # Consider using torch.float32 for GPU computations
|
46 |
+
device="cuda", # Use GPU device if available
|
47 |
+
).to("cuda") # Ensure the model is moved to GPU
|
48 |
+
|
49 |
+
# Additional pipeline configurations
|
50 |
+
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config).to("cuda")
|
51 |
+
pipeline.enable_model_cpu_offload(False) # Consider not offloading to CPU when using GPU
|
52 |
+
|
53 |
+
# Gradio interface setup
|
54 |
+
demo = gr.Interface(
|
55 |
+
fn=transform_image,
|
56 |
+
inputs=gr.Image(label="Upload your face image"),
|
57 |
+
outputs=gr.Image(label="Your Soyjak"),
|
58 |
+
title="InstaSoyjak - turn anyone into a Soyjak",
|
59 |
+
description="All you need to do is upload an image. Please use responsibly. Please follow me on Twitter if you like this space: https://twitter.com/angrypenguinPNG. Idea from Yacine, please give him a follow: https://twitter.com/yacineMTB.",
|
60 |
+
)
|
61 |
+
|
62 |
+
demo.launch()
|