AP123 commited on
Commit
2ad848e
1 Parent(s): 42a1e5c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -6
app.py CHANGED
@@ -45,22 +45,26 @@ def transform_image(face_image):
45
  # Resize the face image
46
  processed_face_image = processed_face_image.resize(desired_size, Image.LANCZOS)
47
 
48
- # Load and resize the style image from the local path
49
- style_image_path = "examples/soyjak2.jpeg"
50
- style_image = Image.open(style_image_path).resize(desired_size, Image.LANCZOS)
 
 
 
 
51
 
52
  # Perform the transformation using the configured pipeline
53
  image = pipeline(
54
  prompt="soyjak",
55
- ip_adapter_image=[style_image, processed_face_image],
56
  negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
57
  num_inference_steps=30,
58
  generator=generator,
59
  ).images[0]
60
 
61
- # Move the pipeline back to CPU after processing if necessary
62
  pipeline.to("cpu")
63
- return image
64
 
65
  # Gradio interface setup
66
  demo = gr.Interface(
 
45
  # Resize the face image
46
  processed_face_image = processed_face_image.resize(desired_size, Image.LANCZOS)
47
 
48
+ # Convert PIL images to PyTorch tensors
49
+ processed_face_tensor = transforms.ToTensor()(processed_face_image).unsqueeze(0).to("cuda")
50
+ style_image_tensor = transforms.ToTensor()(style_image).unsqueeze(0).to("cuda")
51
+
52
+ # Ensure tensors are the correct shape (C, H, W)
53
+ if processed_face_tensor.shape[1:] != (3, 1280, 1280):
54
+ raise ValueError(f"Face image tensor shape is {processed_face_tensor.shape}, but expected shape is (3, 1280, 1280)")
55
 
56
  # Perform the transformation using the configured pipeline
57
  image = pipeline(
58
  prompt="soyjak",
59
+ ip_adapter_image=[style_image_tensor, processed_face_tensor],
60
  negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
61
  num_inference_steps=30,
62
  generator=generator,
63
  ).images[0]
64
 
65
+ # Move the pipeline back to CPU after processing to release GPU resources
66
  pipeline.to("cpu")
67
+ return transforms.ToPILImage()(image.squeeze(0))
68
 
69
  # Gradio interface setup
70
  demo = gr.Interface(