Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,75 +2,55 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
from diffusers import AutoPipelineForText2Image, DDIMScheduler
|
|
|
5 |
import numpy as np
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
# Initialize the pipeline
|
10 |
pipeline = AutoPipelineForText2Image.from_pretrained(
|
11 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
12 |
-
torch_dtype=torch.float16
|
|
|
13 |
)
|
14 |
-
|
15 |
-
# Configure the scheduler for the pipeline
|
16 |
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
17 |
|
18 |
-
|
19 |
-
pipeline.load_ip_adapter(
|
20 |
-
"h94/IP-Adapter",
|
21 |
-
subfolder="sdxl_models",
|
22 |
-
weight_name=[
|
23 |
-
"ip-adapter-plus_sdxl_vit-h.safetensors",
|
24 |
-
"ip-adapter-plus-face_sdxl_vit-h.safetensors"
|
25 |
-
]
|
26 |
-
)
|
27 |
pipeline.set_ip_adapter_scale([0.7, 0.5])
|
28 |
|
29 |
-
|
30 |
-
desired_size = (1024, 1024)
|
31 |
|
32 |
-
@spaces.
|
33 |
def transform_image(face_image):
|
34 |
-
|
35 |
-
pipeline.to("cuda")
|
36 |
-
generator = torch.Generator(device="cuda").manual_seed(0)
|
37 |
|
38 |
-
#
|
39 |
if isinstance(face_image, Image.Image):
|
40 |
processed_face_image = face_image
|
|
|
41 |
elif isinstance(face_image, np.ndarray):
|
42 |
processed_face_image = Image.fromarray(face_image)
|
43 |
else:
|
44 |
raise ValueError("Unsupported image format")
|
45 |
-
|
46 |
-
# Ensure the processed face image is in RGB format
|
47 |
-
processed_face_image = processed_face_image.convert('RGB')
|
48 |
-
|
49 |
-
# Resize the face image to 1024x1024
|
50 |
-
processed_face_image = processed_face_image.resize(desired_size, Image.LANCZOS)
|
51 |
|
52 |
-
# Load the style image from the local path
|
53 |
-
style_image_path = "
|
54 |
-
style_image = Image.open(style_image_path)
|
55 |
-
style_image_tensor = transforms.ToTensor()(style_image).unsqueeze(0).to("cuda")
|
56 |
-
|
57 |
-
# Convert the processed face image to tensor and move to GPU
|
58 |
-
processed_face_image_tensor = transforms.ToTensor()(processed_face_image).unsqueeze(0).to("cuda")
|
59 |
|
60 |
-
# Perform the transformation
|
61 |
image = pipeline(
|
62 |
prompt="soyjak",
|
63 |
-
ip_adapter_image=[
|
64 |
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
|
65 |
num_inference_steps=30,
|
66 |
generator=generator,
|
67 |
).images[0]
|
68 |
|
69 |
-
# Convert the tensor to a PIL Image to display it in Gradio
|
70 |
-
image = transforms.ToPILImage()(image.squeeze(0))
|
71 |
-
|
72 |
-
# Move the pipeline back to CPU after processing to release GPU resources
|
73 |
-
pipeline.to("cpu")
|
74 |
return image
|
75 |
|
76 |
# Gradio interface setup
|
@@ -79,8 +59,8 @@ demo = gr.Interface(
|
|
79 |
inputs=gr.Image(label="Upload your face image"),
|
80 |
outputs=gr.Image(label="Your Soyjak"),
|
81 |
title="InstaSoyjak - turn anyone into a Soyjak",
|
82 |
-
description="All you need to do is upload an image. Please use responsibly.",
|
83 |
)
|
84 |
|
85 |
-
demo.queue(max_size=20)
|
86 |
-
demo.launch()
|
|
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
from diffusers import AutoPipelineForText2Image, DDIMScheduler
|
5 |
+
from transformers import CLIPVisionModelWithProjection
|
6 |
import numpy as np
|
7 |
+
import spaces # Import ZeroGPU decorator
|
8 |
+
|
9 |
+
# Load models and configure pipeline
|
10 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
11 |
+
"h94/IP-Adapter",
|
12 |
+
subfolder="models/image_encoder",
|
13 |
+
torch_dtype=torch.float16,
|
14 |
+
)
|
15 |
|
|
|
16 |
pipeline = AutoPipelineForText2Image.from_pretrained(
|
17 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
18 |
+
torch_dtype=torch.float16,
|
19 |
+
image_encoder=image_encoder,
|
20 |
)
|
|
|
|
|
21 |
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
22 |
|
23 |
+
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
pipeline.set_ip_adapter_scale([0.7, 0.5])
|
25 |
|
26 |
+
pipeline.enable_model_cpu_offload()
|
|
|
27 |
|
28 |
+
@spaces.ZeroGPU # Apply ZeroGPU decorator to the function
|
29 |
def transform_image(face_image):
|
30 |
+
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
|
|
|
31 |
|
32 |
+
# Check if the input is already a PIL Image
|
33 |
if isinstance(face_image, Image.Image):
|
34 |
processed_face_image = face_image
|
35 |
+
# If the input is a NumPy array, convert it to a PIL Image
|
36 |
elif isinstance(face_image, np.ndarray):
|
37 |
processed_face_image = Image.fromarray(face_image)
|
38 |
else:
|
39 |
raise ValueError("Unsupported image format")
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# Load the style image from the local path
|
42 |
+
style_image_path = "/content/soyjak2.jpeg"
|
43 |
+
style_image = Image.open(style_image_path)
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
# Perform the transformation
|
46 |
image = pipeline(
|
47 |
prompt="soyjak",
|
48 |
+
ip_adapter_image=[style_image, processed_face_image],
|
49 |
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
|
50 |
num_inference_steps=30,
|
51 |
generator=generator,
|
52 |
).images[0]
|
53 |
|
|
|
|
|
|
|
|
|
|
|
54 |
return image
|
55 |
|
56 |
# Gradio interface setup
|
|
|
59 |
inputs=gr.Image(label="Upload your face image"),
|
60 |
outputs=gr.Image(label="Your Soyjak"),
|
61 |
title="InstaSoyjak - turn anyone into a Soyjak",
|
62 |
+
description="All you need to do is upload an image. Please use responsibly. Please follow me on Twitter if you like this space: https://twitter.com/angrypenguinPNG. Idea from Yacine, please give him a follow: https://twitter.com/yacineMTB.",
|
63 |
)
|
64 |
|
65 |
+
demo.queue(max_size=20) # Configures the queue with a maximum size of 20
|
66 |
+
demo.launch()
|