Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ from transformers import CLIPVisionModelWithProjection
|
|
6 |
import numpy as np
|
7 |
import spaces
|
8 |
|
9 |
-
|
10 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
11 |
"h94/IP-Adapter",
|
12 |
subfolder="models/image_encoder",
|
@@ -19,30 +19,26 @@ pipeline = AutoPipelineForText2Image.from_pretrained(
|
|
19 |
image_encoder=image_encoder,
|
20 |
)
|
21 |
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
22 |
-
|
23 |
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"])
|
24 |
-
pipeline.set_ip_adapter_scale([soy_strength, anon_strength])
|
25 |
-
|
26 |
pipeline.enable_model_cpu_offload()
|
27 |
|
28 |
@spaces.GPU
|
29 |
-
def transform_image(face_image):
|
30 |
generator = torch.Generator(device="cpu").manual_seed(0)
|
31 |
|
32 |
-
# Check if the input is already a PIL Image
|
33 |
if isinstance(face_image, Image.Image):
|
34 |
processed_face_image = face_image
|
35 |
-
# If the input is a NumPy array, convert it to a PIL Image
|
36 |
elif isinstance(face_image, np.ndarray):
|
37 |
processed_face_image = Image.fromarray(face_image)
|
38 |
else:
|
39 |
raise ValueError("Unsupported image format")
|
40 |
|
41 |
-
# Load the style image from the local path
|
42 |
style_image_path = "examples/soyjak2.jpg"
|
43 |
style_image = Image.open(style_image_path)
|
44 |
|
45 |
-
#
|
|
|
|
|
46 |
image = pipeline(
|
47 |
prompt="soyjak",
|
48 |
ip_adapter_image=[style_image, processed_face_image],
|
@@ -53,18 +49,18 @@ def transform_image(face_image):
|
|
53 |
|
54 |
return image
|
55 |
|
56 |
-
# Gradio interface setup
|
57 |
demo = gr.Interface(
|
58 |
fn=transform_image,
|
59 |
inputs=[
|
60 |
gr.Image(label="Upload your face image"),
|
61 |
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.7, label="Soy Strength"),
|
62 |
-
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.5, label="Face Strength")
|
63 |
],
|
64 |
outputs=gr.Image(label="Your Soyjak"),
|
65 |
title="InstaSoyjak - turn anyone into a Soyjak",
|
66 |
-
description="All you need to do is upload an image. **Please use responsibly.**
|
67 |
)
|
68 |
|
69 |
-
demo.queue(max_size=20)
|
70 |
-
demo.launch()
|
|
|
6 |
import numpy as np
|
7 |
import spaces
|
8 |
|
9 |
+
# Initialize the image encoder and pipeline outside the function
|
10 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
11 |
"h94/IP-Adapter",
|
12 |
subfolder="models/image_encoder",
|
|
|
19 |
image_encoder=image_encoder,
|
20 |
)
|
21 |
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
|
|
22 |
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"])
|
|
|
|
|
23 |
pipeline.enable_model_cpu_offload()
|
24 |
|
25 |
@spaces.GPU
|
26 |
+
def transform_image(face_image, soy_strength, face_strength):
|
27 |
generator = torch.Generator(device="cpu").manual_seed(0)
|
28 |
|
|
|
29 |
if isinstance(face_image, Image.Image):
|
30 |
processed_face_image = face_image
|
|
|
31 |
elif isinstance(face_image, np.ndarray):
|
32 |
processed_face_image = Image.fromarray(face_image)
|
33 |
else:
|
34 |
raise ValueError("Unsupported image format")
|
35 |
|
|
|
36 |
style_image_path = "examples/soyjak2.jpg"
|
37 |
style_image = Image.open(style_image_path)
|
38 |
|
39 |
+
# Set the IP adapter scale dynamically based on the sliders
|
40 |
+
pipeline.set_ip_adapter_scale([soy_strength, face_strength])
|
41 |
+
|
42 |
image = pipeline(
|
43 |
prompt="soyjak",
|
44 |
ip_adapter_image=[style_image, processed_face_image],
|
|
|
49 |
|
50 |
return image
|
51 |
|
52 |
+
# Gradio interface setup with dynamic sliders
|
53 |
demo = gr.Interface(
|
54 |
fn=transform_image,
|
55 |
inputs=[
|
56 |
gr.Image(label="Upload your face image"),
|
57 |
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.7, label="Soy Strength"),
|
58 |
+
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.5, label="Face Strength") # Renamed to Face Strength
|
59 |
],
|
60 |
outputs=gr.Image(label="Your Soyjak"),
|
61 |
title="InstaSoyjak - turn anyone into a Soyjak",
|
62 |
+
description="All you need to do is upload an image and adjust the strengths. **Please use responsibly.**",
|
63 |
)
|
64 |
|
65 |
+
demo.queue(max_size=20)
|
66 |
+
demo.launch()
|