Spaces:
Runtime error
Runtime error
feature for selecting inference steps
Browse files- Added a dropdown to select inference steps.
- Moved model loading out of inference function
- Changed the Interface to Blocks API
app.py
CHANGED
@@ -4,34 +4,65 @@ from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
import spaces
|
6 |
|
|
|
7 |
# Constants
|
8 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
9 |
repo = "ByteDance/SDXL-Lightning"
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
# Ensure model and scheduler are initialized in GPU-enabled function
|
16 |
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
17 |
-
pipe.unet.load_state_dict(torch.load(hf_hub_download(repo, ckpt), map_location="cuda"))
|
18 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
return image
|
22 |
|
|
|
23 |
# Gradio Interface
|
24 |
description = """
|
25 |
This demo utilizes the SDXL-Lightning model by ByteDance, which is a fast text-to-image generative model capable of producing high-quality images in 4 steps.
|
26 |
As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning
|
27 |
"""
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
)
|
|
|
|
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
import spaces
|
6 |
|
7 |
+
|
8 |
# Constants
|
9 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
10 |
repo = "ByteDance/SDXL-Lightning"
|
11 |
+
checkpoints = {
|
12 |
+
"1-Step" : ["sdxl_lightning_1step_unet_x0.pth", 1],
|
13 |
+
"2-Step" : ["sdxl_lightning_2step_unet.pth", 2],
|
14 |
+
"4-Step" : ["sdxl_lightning_4step_unet.pth", 4],
|
15 |
+
"8-Step" : ["sdxl_lightning_8step_unet.pth", 8],
|
16 |
+
}
|
17 |
|
18 |
+
|
19 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
20 |
+
if torch.cuda.is_available():
|
|
|
21 |
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
|
|
|
|
22 |
|
23 |
+
|
24 |
+
# Function
|
25 |
+
@spaces.GPU(enable_queue=True)
|
26 |
+
def generate_image(prompt, ckpt):
|
27 |
+
|
28 |
+
checkpoint = checkpoints[ckpt][0]
|
29 |
+
num_inference_steps = checkpoints[ckpt][1]
|
30 |
+
|
31 |
+
if num_inference_steps==1:
|
32 |
+
# Ensure sampler uses "trailing" timesteps and "sample" prediction type for 1-step inference.
|
33 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
34 |
+
else:
|
35 |
+
# Ensure sampler uses "trailing" timesteps.
|
36 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
37 |
+
|
38 |
+
pipe.unet.load_state_dict(torch.load(hf_hub_download(repo, checkpoint), map_location="cuda"))
|
39 |
+
image = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0).images[0]
|
40 |
return image
|
41 |
|
42 |
+
|
43 |
# Gradio Interface
|
44 |
description = """
|
45 |
This demo utilizes the SDXL-Lightning model by ByteDance, which is a fast text-to-image generative model capable of producing high-quality images in 4 steps.
|
46 |
As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning
|
47 |
"""
|
48 |
|
49 |
+
with gr.Blocks(css="style.css") as demo:
|
50 |
+
gr.HTML("<h1><center>Text-to-Image with SDXL Lightning ⚡</center></h1>")
|
51 |
+
gr.Markdown(description)
|
52 |
+
with gr.Group():
|
53 |
+
with gr.Row():
|
54 |
+
prompt = gr.Textbox(label='Enter you image prompt:', scale=8)
|
55 |
+
ckpt = gr.Dropdown(label='Select Inference Steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
56 |
+
submit = gr.Button(scale=1, variant='primary')
|
57 |
+
img = gr.Image(label='SDXL-Lightening Generate Image')
|
58 |
|
59 |
+
prompt.submit(fn=generate_image,
|
60 |
+
inputs=[prompt, ckpt],
|
61 |
+
outputs=img,
|
62 |
+
)
|
63 |
+
submit.click(fn=generate_image,
|
64 |
+
inputs=[prompt, ckpt],
|
65 |
+
outputs=img,
|
66 |
+
)
|
67 |
+
|
68 |
+
demo.queue().launch()
|