Spaces:
Runtime error
Runtime error
File size: 16,141 Bytes
3e1840e b295b08 24b29d4 b295b08 063e7c6 b295b08 063e7c6 b295b08 063e7c6 b295b08 063e7c6 b295b08 e8f9bdd 97dc02f e8f9bdd 97dc02f e8f9bdd 97dc02f e8f9bdd 97dc02f e8f9bdd 97dc02f e8f9bdd 97dc02f e8f9bdd 97dc02f e8f9bdd b295b08 37a9a0b 69bb68e 24b29d4 b295b08 37a9a0b b295b08 24b29d4 69bb68e 24b29d4 b295b08 37a9a0b 965c63f 36a2abd 003cf23 b295b08 37a9a0b 8ecb823 37a9a0b 003cf23 b295b08 37a9a0b 69bb68e b295b08 063e7c6 b295b08 69bb68e b295b08 37a9a0b 69bb68e b295b08 24b29d4 b295b08 24b29d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from PIL import Image, ImageOps
import gradio as gr
import user_history
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
@torch.no_grad()
def call(
pipe,
prompt: Union[str, List[str]] = None,
prompt2: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
guidance_scale2: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
):
# 0. Default height and width to unet
height = height or pipe.default_sample_size * pipe.vae_scale_factor
width = width or pipe.default_sample_size * pipe.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. Raise error if not correct
pipe.check_inputs(
prompt,
None,
height,
width,
callback_steps,
negative_prompt,
None,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = pipe._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
lora_scale=text_encoder_lora_scale,
)
(
prompt2_embeds,
negative_prompt2_embeds,
pooled_prompt2_embeds,
negative_pooled_prompt2_embeds,
) = pipe.encode_prompt(
prompt=prompt2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt2,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
lora_scale=text_encoder_lora_scale,
)
# 4. Prepare timesteps
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = pipe.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = pipe.unet.config.in_channels
latents = pipe.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = pipe.prepare_extra_step_kwargs(generator, eta)
# 7. Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
add_text2_embeds = pooled_prompt2_embeds
add_time_ids = pipe._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
)
add_time2_ids = pipe._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=prompt2_embeds.dtype
)
if negative_original_size is not None and negative_target_size is not None:
negative_add_time_ids = pipe._get_add_time_ids(
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
)
else:
negative_add_time_ids = add_time_ids
negative_add_time2_ids = add_time2_ids
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
prompt2_embeds = torch.cat([negative_prompt2_embeds, prompt2_embeds], dim=0)
add_text2_embeds = torch.cat([negative_pooled_prompt2_embeds, add_text2_embeds], dim=0)
add_time2_ids = torch.cat([negative_add_time2_ids, add_time2_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
prompt2_embeds = prompt2_embeds.to(device)
add_text2_embeds = add_text2_embeds.to(device)
add_time2_ids = add_time2_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
# 8. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * pipe.scheduler.order, 0)
# 7.1 Apply denoising_end
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
discrete_timestep_cutoff = int(
round(
pipe.scheduler.config.num_train_timesteps
- (denoising_end * pipe.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
timesteps = timesteps[:num_inference_steps]
with pipe.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if i % 2 == 0:
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
# expand the latents if we are doing classifier free guidance
latent_model_input2 = torch.cat([latents.flip(2)] * 2) if do_classifier_free_guidance else latents
latent_model_input2 = pipe.scheduler.scale_model_input(latent_model_input2, t)
# predict the noise residual
added_cond2_kwargs = {"text_embeds": add_text2_embeds, "time_ids": add_time2_ids}
noise_pred2 = pipe.unet(
latent_model_input2,
t,
encoder_hidden_states=prompt2_embeds,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond2_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred2_uncond, noise_pred2_text = noise_pred2.chunk(2)
noise_pred2 = noise_pred2_uncond + guidance_scale2 * (noise_pred2_text - noise_pred2_uncond)
noise_pred = noise_pred if i % 2 == 0 else noise_pred2.flip(2)
# compute the previous noisy sample x_t -> x_t-1
latents = pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = pipe.vae.dtype == torch.float16 and pipe.vae.config.force_upcast
if needs_upcasting:
pipe.upcast_vae()
latents = latents.to(next(iter(pipe.vae.post_quant_conv.parameters())).dtype)
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
pipe.vae.to(dtype=torch.float16)
else:
image = latents
if not output_type == "latent":
# apply watermark if available
if pipe.watermark is not None:
image = pipe.watermark.apply_watermark(image)
image = pipe.image_processor.postprocess(image, output_type=output_type)
# Offload all models
pipe.maybe_free_model_hooks()
if not return_dict:
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
NEGATIVE_PROMPTS = "text, watermark, low-quality, signature, moiré pattern, downsampling, aliasing, distorted, blurry, glossy, blur, jpeg artifacts, compression artifacts, poorly drawn, low-resolution, bad, distortion, twisted, excessive, exaggerated pose, exaggerated limbs, grainy, symmetrical, duplicate, error, pattern, beginner, pixelated, fake, hyper, glitch, overexposed, high-contrast, bad-contrast"
def rotate_output(has_flipped):
if(has_flipped):
return gr.Image(elem_classes="not_rotated"), gr.Button("Rotate to see prompt 2!"), not has_flipped
else:
return gr.Image(elem_classes="rotated"), gr.Button("Rotate to see prompt 1!"), not has_flipped
def simple_call(prompt1, prompt2, profile: gr.OAuthProfile | None=None):
generator = [torch.Generator(device="cuda").manual_seed(5)]
res = call(
pipe,
prompt1,
prompt2,
width=768,
height=768,
num_images_per_prompt=1,
num_inference_steps=50,
guidance_scale=5.0,
guidance_scale2=8.0,
negative_prompt=NEGATIVE_PROMPTS,
negative_prompt2=NEGATIVE_PROMPTS,
generator=generator
)
image1 = res.images[0]
# save generated images (if logged in)
user_history.save_image(label=f"{prompt1} / {prompt2}", image=image1, profile=profile, metadata={
"prompt2": prompt1,
"prompt1": prompt2,
})
return image1
css = '''
#result_image{ transition: transform 2s ease-in-out }
#result_image.rotated{transform: rotate(180deg)}
'''
with gr.Blocks() as app:
gr.Markdown(
'''
<center>
<h1>Upside Down Diffusion</h1>
<p>Code by Alex Carlier, <a href="https://colab.research.google.com/drive/1rjDQOn11cTHAf3Oeq87Hfl_Vh41NbTl4?usp=sharing">Google Colab</a>, follow them on <a href="https://twitter.com/alexcarliera">Twitter</a></p>
<p>A space by <a href="https://twitter.com/angrypenguinPNG">AP</a> with contributions from <a href="https://twitter.com/multimodalart">MultimodalArt</a></p>
</center>
<hr>
<p>
Enter your first prompt to craft an image that will show when upright. Then, add a second prompt to reveal a mesmerizing surprise when you flip the image upside down! ✨
</p>
<p>
<em>For best results, please include the prompt in the following format: Art Style and Object. Here is an example: Prompt 1: A sketch of a turtle, Prompt 2: A sketch of a tree. Both prompts need to have the same style!</em>
</p>
'''
)
has_flipped = gr.State(value=False)
with gr.Row():
with gr.Column():
prompt1 = gr.Textbox(label="Prompt 1", info="Prompt for the side up", placeholder="A sketch of a...")
prompt2 = gr.Textbox(label="Prompt 2", info="Prompt for the side down", placeholder="A sketch of a...")
run_btn = gr.Button("Run")
with gr.Column():
result_image1 = gr.Image(label="Output", elem_id="result_image", elem_classes="not_rotated")
rotate_button = gr.Button("Rotate to see prompt 2!")
run_btn.click(
simple_call,
inputs=[prompt1, prompt2],
outputs=[result_image1]
)
rotate_button.click(
rotate_output,
inputs=[has_flipped],
outputs=[result_image1, rotate_button, has_flipped],
queue=False,
show_progress=False
)
with gr.Blocks(css=css) as app_with_history:
with gr.Tab("Upside Down Diffusion"):
app.render()
with gr.Tab("Past generations"):
user_history.render()
app_with_history.queue(max_size=20)
if __name__ == "__main__":
app_with_history.launch(debug=True) |