multimodalart's picture
Update app.py
3e1840e
raw
history blame
15.7 kB
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from PIL import Image, ImageOps
import gradio as gr
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
@torch.no_grad()
def call(
pipe,
prompt: Union[str, List[str]] = None,
prompt2: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
guidance_scale2: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
):
# 0. Default height and width to unet
height = height or pipe.default_sample_size * pipe.vae_scale_factor
width = width or pipe.default_sample_size * pipe.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. Raise error if not correct
pipe.check_inputs(
prompt,
None,
height,
width,
callback_steps,
negative_prompt,
None,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = pipe._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
lora_scale=text_encoder_lora_scale,
)
(
prompt2_embeds,
negative_prompt2_embeds,
pooled_prompt2_embeds,
negative_pooled_prompt2_embeds,
) = pipe.encode_prompt(
prompt=prompt2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt2,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
lora_scale=text_encoder_lora_scale,
)
# 4. Prepare timesteps
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = pipe.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = pipe.unet.config.in_channels
latents = pipe.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = pipe.prepare_extra_step_kwargs(generator, eta)
# 7. Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
add_text2_embeds = pooled_prompt2_embeds
add_time_ids = pipe._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
)
add_time2_ids = pipe._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=prompt2_embeds.dtype
)
if negative_original_size is not None and negative_target_size is not None:
negative_add_time_ids = pipe._get_add_time_ids(
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
)
else:
negative_add_time_ids = add_time_ids
negative_add_time2_ids = add_time2_ids
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
prompt2_embeds = torch.cat([negative_prompt2_embeds, prompt2_embeds], dim=0)
add_text2_embeds = torch.cat([negative_pooled_prompt2_embeds, add_text2_embeds], dim=0)
add_time2_ids = torch.cat([negative_add_time2_ids, add_time2_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
prompt2_embeds = prompt2_embeds.to(device)
add_text2_embeds = add_text2_embeds.to(device)
add_time2_ids = add_time2_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
# 8. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * pipe.scheduler.order, 0)
# 7.1 Apply denoising_end
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
discrete_timestep_cutoff = int(
round(
pipe.scheduler.config.num_train_timesteps
- (denoising_end * pipe.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
timesteps = timesteps[:num_inference_steps]
with pipe.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if i % 2 == 0:
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
# expand the latents if we are doing classifier free guidance
latent_model_input2 = torch.cat([latents.flip(2)] * 2) if do_classifier_free_guidance else latents
latent_model_input2 = pipe.scheduler.scale_model_input(latent_model_input2, t)
# predict the noise residual
added_cond2_kwargs = {"text_embeds": add_text2_embeds, "time_ids": add_time2_ids}
noise_pred2 = pipe.unet(
latent_model_input2,
t,
encoder_hidden_states=prompt2_embeds,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond2_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred2_uncond, noise_pred2_text = noise_pred2.chunk(2)
noise_pred2 = noise_pred2_uncond + guidance_scale2 * (noise_pred2_text - noise_pred2_uncond)
noise_pred = noise_pred if i % 2 == 0 else noise_pred2.flip(2)
# compute the previous noisy sample x_t -> x_t-1
latents = pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = pipe.vae.dtype == torch.float16 and pipe.vae.config.force_upcast
if needs_upcasting:
pipe.upcast_vae()
latents = latents.to(next(iter(pipe.vae.post_quant_conv.parameters())).dtype)
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
pipe.vae.to(dtype=torch.float16)
else:
image = latents
if not output_type == "latent":
# apply watermark if available
if pipe.watermark is not None:
image = pipe.watermark.apply_watermark(image)
image = pipe.image_processor.postprocess(image, output_type=output_type)
# Offload all models
pipe.maybe_free_model_hooks()
if not return_dict:
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
NEGATIVE_PROMPTS = "text, watermark, low-quality, signature, moiré pattern, downsampling, aliasing, distorted, blurry, glossy, blur, jpeg artifacts, compression artifacts, poorly drawn, low-resolution, bad, distortion, twisted, excessive, exaggerated pose, exaggerated limbs, grainy, symmetrical, duplicate, error, pattern, beginner, pixelated, fake, hyper, glitch, overexposed, high-contrast, bad-contrast"
def rotate_output(has_flipped):
if(has_flipped):
return gr.Image(elem_classes="not_rotated"), gr.Button("Rotate to see prompt 2!"), not has_flipped
else:
return gr.Image(elem_classes="rotated"), gr.Button("Rotate to see prompt 1!"), not has_flipped
def simple_call(prompt1, prompt2):
generator = [torch.Generator(device="cuda").manual_seed(5)]
res = call(
pipe,
prompt1,
prompt2,
width=768,
height=768,
num_images_per_prompt=1,
num_inference_steps=50,
guidance_scale=5.0,
guidance_scale2=8.0,
negative_prompt=NEGATIVE_PROMPTS,
negative_prompt2=NEGATIVE_PROMPTS,
generator=generator
)
image1 = res.images[0]
return image1
css = '''
#result_image{ transition: transform 2s ease-in-out }
#result_image.rotated{transform: rotate(180deg)}
'''
with gr.Blocks(css=css) as app:
gr.Markdown(
'''
<center>
<h1>Upside Down Diffusion</h1>
<p>Code by Alex Carlier, find their <a href="https://colab.research.google.com/drive/1rjDQOn11cTHAf3Oeq87Hfl_Vh41NbTl4?usp=sharing">Google Colab</a> here and please follow them on <a href="https://twitter.com/alexcarliera">Twitter</a></p>
<p>A space by <a href="https://twitter.com/angrypenguinPNG">AP</a> with contributions from <a href="https://twitter.com/multimodalart">MultimodalArt</a></p>
</center>
<hr>
<p>
Enter your first prompt to craft an image that will show when upright. Then, add a second prompt to reveal a mesmerizing surprise when you flip the image upside down! ✨
</p>
<p>
<em>For best results, please include the prompt in the following format: Art Style and Object. Here is an example: Prompt 1: A sketch of a turtle, Prompt 2: A sketch of a tree. Both prompts need to have the same style!</em>
</p>
'''
)
has_flipped = gr.State(value=False)
with gr.Row():
with gr.Column():
prompt1 = gr.Textbox(label="Prompt 1", info="Prompt for the side up", placeholder="A sketch of a...")
prompt2 = gr.Textbox(label="Prompt 2", info="Prompt for the side down", placeholder="A sketch of a...")
run_btn = gr.Button("Run")
with gr.Column():
result_image1 = gr.Image(label="Output", elem_id="result_image", elem_classes="not_rotated")
rotate_button = gr.Button("Rotate to see prompt 2!")
run_btn.click(
simple_call,
inputs=[prompt1, prompt2],
outputs=[result_image1]
)
rotate_button.click(
rotate_output,
inputs=[has_flipped],
outputs=[result_image1, rotate_button, has_flipped],
queue=False,
show_progress=False
)
app.queue(max_size=20)
if __name__ == "__main__":
app.launch(debug=True)