from diffusers import StableDiffusionXLPipeline, AutoencoderKL from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from PIL import Image, ImageOps import gradio as gr import user_history vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, ) pipe.to("cuda") pipe.unet.to(memory_format=torch.channels_last) pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) @torch.no_grad() def call( pipe, prompt: Union[str, List[str]] = None, prompt2: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, denoising_end: Optional[float] = None, guidance_scale: float = 5.0, guidance_scale2: float = 5.0, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt2: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, original_size: Optional[Tuple[int, int]] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), target_size: Optional[Tuple[int, int]] = None, negative_original_size: Optional[Tuple[int, int]] = None, negative_crops_coords_top_left: Tuple[int, int] = (0, 0), negative_target_size: Optional[Tuple[int, int]] = None, ): # 0. Default height and width to unet height = height or pipe.default_sample_size * pipe.vae_scale_factor width = width or pipe.default_sample_size * pipe.vae_scale_factor original_size = original_size or (height, width) target_size = target_size or (height, width) # 1. Check inputs. Raise error if not correct pipe.check_inputs( prompt, None, height, width, callback_steps, negative_prompt, None, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = pipe._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, lora_scale=text_encoder_lora_scale, ) ( prompt2_embeds, negative_prompt2_embeds, pooled_prompt2_embeds, negative_pooled_prompt2_embeds, ) = pipe.encode_prompt( prompt=prompt2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt2, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, lora_scale=text_encoder_lora_scale, ) # 4. Prepare timesteps pipe.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = pipe.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = pipe.unet.config.in_channels latents = pipe.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = pipe.prepare_extra_step_kwargs(generator, eta) # 7. Prepare added time ids & embeddings add_text_embeds = pooled_prompt_embeds add_text2_embeds = pooled_prompt2_embeds add_time_ids = pipe._get_add_time_ids( original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype ) add_time2_ids = pipe._get_add_time_ids( original_size, crops_coords_top_left, target_size, dtype=prompt2_embeds.dtype ) if negative_original_size is not None and negative_target_size is not None: negative_add_time_ids = pipe._get_add_time_ids( negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, ) else: negative_add_time_ids = add_time_ids negative_add_time2_ids = add_time2_ids if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) prompt2_embeds = torch.cat([negative_prompt2_embeds, prompt2_embeds], dim=0) add_text2_embeds = torch.cat([negative_pooled_prompt2_embeds, add_text2_embeds], dim=0) add_time2_ids = torch.cat([negative_add_time2_ids, add_time2_ids], dim=0) prompt_embeds = prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) prompt2_embeds = prompt2_embeds.to(device) add_text2_embeds = add_text2_embeds.to(device) add_time2_ids = add_time2_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) # 8. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * pipe.scheduler.order, 0) # 7.1 Apply denoising_end if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1: discrete_timestep_cutoff = int( round( pipe.scheduler.config.num_train_timesteps - (denoising_end * pipe.scheduler.config.num_train_timesteps) ) ) num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) timesteps = timesteps[:num_inference_steps] with pipe.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if i % 2 == 0: # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} noise_pred = pipe.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) else: # expand the latents if we are doing classifier free guidance latent_model_input2 = torch.cat([latents.flip(2)] * 2) if do_classifier_free_guidance else latents latent_model_input2 = pipe.scheduler.scale_model_input(latent_model_input2, t) # predict the noise residual added_cond2_kwargs = {"text_embeds": add_text2_embeds, "time_ids": add_time2_ids} noise_pred2 = pipe.unet( latent_model_input2, t, encoder_hidden_states=prompt2_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond2_kwargs, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred2_uncond, noise_pred2_text = noise_pred2.chunk(2) noise_pred2 = noise_pred2_uncond + guidance_scale2 * (noise_pred2_text - noise_pred2_uncond) noise_pred = noise_pred if i % 2 == 0 else noise_pred2.flip(2) # compute the previous noisy sample x_t -> x_t-1 latents = pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) if not output_type == "latent": # make sure the VAE is in float32 mode, as it overflows in float16 needs_upcasting = pipe.vae.dtype == torch.float16 and pipe.vae.config.force_upcast if needs_upcasting: pipe.upcast_vae() latents = latents.to(next(iter(pipe.vae.post_quant_conv.parameters())).dtype) image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0] # cast back to fp16 if needed if needs_upcasting: pipe.vae.to(dtype=torch.float16) else: image = latents if not output_type == "latent": # apply watermark if available if pipe.watermark is not None: image = pipe.watermark.apply_watermark(image) image = pipe.image_processor.postprocess(image, output_type=output_type) # Offload all models pipe.maybe_free_model_hooks() if not return_dict: return (image,) return StableDiffusionXLPipelineOutput(images=image) NEGATIVE_PROMPTS = "text, watermark, low-quality, signature, moiré pattern, downsampling, aliasing, distorted, blurry, glossy, blur, jpeg artifacts, compression artifacts, poorly drawn, low-resolution, bad, distortion, twisted, excessive, exaggerated pose, exaggerated limbs, grainy, symmetrical, duplicate, error, pattern, beginner, pixelated, fake, hyper, glitch, overexposed, high-contrast, bad-contrast" def rotate_output(has_flipped): if(has_flipped): return gr.Image(elem_classes="not_rotated"), gr.Button("Rotate to see prompt 2!"), not has_flipped else: return gr.Image(elem_classes="rotated"), gr.Button("Rotate to see prompt 1!"), not has_flipped def simple_call(prompt1, prompt2, profile: gr.OAuthProfile | None=None): generator = [torch.Generator(device="cuda").manual_seed(5)] res = call( pipe, prompt1, prompt2, width=768, height=768, num_images_per_prompt=1, num_inference_steps=50, guidance_scale=5.0, guidance_scale2=8.0, negative_prompt=NEGATIVE_PROMPTS, negative_prompt2=NEGATIVE_PROMPTS, generator=generator ) image1 = res.images[0] # save generated images (if logged in) user_history.save_image(label=f"{prompt1} / {prompt2}", image=image1, profile=profile, metadata={ "prompt2": prompt1, "prompt1": prompt2, }) return image1 css = ''' #result_image{ transition: transform 2s ease-in-out } #result_image.rotated{transform: rotate(180deg)} ''' with gr.Blocks() as app: gr.Markdown( '''
Code by Alex Carlier, Google Colab, follow them on Twitter
A space by AP with contributions from MultimodalArt
Enter your first prompt to craft an image that will show when upright. Then, add a second prompt to reveal a mesmerizing surprise when you flip the image upside down! ✨
For best results, please include the prompt in the following format: Art Style and Object. Here is an example: Prompt 1: A sketch of a turtle, Prompt 2: A sketch of a tree. Both prompts need to have the same style!
''' ) has_flipped = gr.State(value=False) with gr.Row(): with gr.Column(): prompt1 = gr.Textbox(label="Prompt 1", info="Prompt for the side up", placeholder="A sketch of a...") prompt2 = gr.Textbox(label="Prompt 2", info="Prompt for the side down", placeholder="A sketch of a...") run_btn = gr.Button("Run") with gr.Column(): result_image1 = gr.Image(label="Output", elem_id="result_image", elem_classes="not_rotated") rotate_button = gr.Button("Rotate to see prompt 2!") run_btn.click( simple_call, inputs=[prompt1, prompt2], outputs=[result_image1] ) rotate_button.click( rotate_output, inputs=[has_flipped], outputs=[result_image1, rotate_button, has_flipped], queue=False, show_progress=False ) with gr.Blocks(css=css) as app_with_history: with gr.Tab("Upside Down Diffusion"): app.render() with gr.Tab("Past generations"): user_history.render() app_with_history.queue(max_size=20) if __name__ == "__main__": app_with_history.launch(debug=True)