Spaces:
Sleeping
Sleeping
File size: 13,554 Bytes
8e3e789 af0160d 85993f4 08c1d69 85993f4 08c1d69 48c62f7 85993f4 08c1d69 7672122 99ee6d2 85993f4 99ee6d2 b7e5937 08c1d69 b7e5937 a563c94 b7e5937 af0160d 3c2c5b7 af0160d 85993f4 08c1d69 af0e7f9 af0160d 3c2c5b7 85993f4 3c2c5b7 85993f4 af0e7f9 85993f4 08c1d69 85993f4 08c1d69 85993f4 08c1d69 85993f4 99ee6d2 85993f4 99ee6d2 85993f4 08c1d69 85993f4 08c1d69 3c2c5b7 08c1d69 85993f4 7672122 08c1d69 85993f4 08c1d69 99ee6d2 85993f4 1920ef2 6cb40a3 99ee6d2 48c62f7 1920ef2 08c1d69 1920ef2 08c1d69 1920ef2 08c1d69 1920ef2 b7e5937 3c2c5b7 08c1d69 8e3e789 5803fc9 b7e5937 08c1d69 3c2c5b7 8e3e789 3c2c5b7 8e3e789 3c2c5b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import base64
import streamlit as st
import zipfile
from utils import *
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import streamlit.components.v1 as components
from matplotlib import colors
st.set_page_config(layout="wide")
def create_animation(images, pred_dates):
print('Creating composition of images...')
fps = 2
fig_an, ax_an = plt.subplots()
plt.title("")
a = images[0]
im = ax_an.imshow(a, interpolation='none', aspect='auto', vmin=0, vmax=1)
title = ax_an.text(0.5, 0.85, "", bbox={'facecolor': 'w', 'alpha': 0.5, 'pad': 5},
transform=ax_an.transAxes, ha="center")
def animate_func(idx):
title.set_text("date: " + pred_dates[idx])
im.set_array(images[idx])
return [im]
anima = animation.FuncAnimation(fig_an, animate_func, frames=len(images), interval=1000 / fps, blit=True,
repeat=False)
print('Done!')
return anima
def load_daily_preds_as_animations(pred_full_paths, pred_dates):
daily_preds = []
for path in pred_full_paths:
img, _ = read(path)
img = np.squeeze(img)
img = [classes_color_map[p] for p in img]
daily_preds.append(img)
anima = create_animation(daily_preds, pred_dates)
return anima
def load_src_images_as_animations(img_paths, pred_dates):
imgs = []
for path in img_paths:
img, _ = read(path)
# https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/composites/
# IREA image:
# False colors (8,4,3): 2,blue-B3,green-B4,5,6,7,red-B8,11,12
# Simple RGB (4, 3, 2): blue-B2,green-B3,red-B4,5,6,7,8,11,12
rgb = img[[2, 1, 0], :, :]
rgb = np.moveaxis(rgb, 0, -1)
imgs.append(rgb/np.amax(rgb))
anima = create_animation(imgs, pred_dates)
return anima
if not hasattr(st, 'paths'):
st.paths = None
if not hasattr(st, 'daily_model'):
best_model_daily_file_name = "best_model_daily.pth"
best_model_annual_file_name = "best_model_annual.pth"
first_input_batch = torch.zeros(71, 9, 5, 48, 48)
# first_input_batch = first_input_batch.view(-1, *first_input_batch.shape[2:])
st.daily_model = FPN(opt, first_input_batch, opt.win_size)
st.annual_model = SimpleNN(opt)
if torch.cuda.is_available():
st.daily_model = torch.nn.DataParallel(st.daily_model).cuda()
st.annual_model = torch.nn.DataParallel(st.annual_model).cuda()
st.daily_model = torch.nn.DataParallel(st.daily_model).cuda()
st.annual_model = torch.nn.DataParallel(st.annual_model).cuda()
else:
st.daily_model = torch.nn.DataParallel(st.daily_model).cpu()
st.annual_model = torch.nn.DataParallel(st.annual_model).cpu()
st.daily_model = torch.nn.DataParallel(st.daily_model).cpu()
st.annual_model = torch.nn.DataParallel(st.annual_model).cpu()
print('trying to resume previous saved models...')
state = resume(
os.path.join(opt.resume_path, best_model_daily_file_name),
model=st.daily_model, optimizer=None)
state = resume(
os.path.join(opt.resume_path, best_model_annual_file_name),
model=st.annual_model, optimizer=None)
st.daily_model = st.daily_model.eval()
st.annual_model = st.annual_model.eval()
# Load Model
# @title Load pretrained weights
st.title('In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series')
st.markdown(""" Demo App for the model presented in the [paper](https://www.sciencedirect.com/science/article/pii/S0924271622003203):
```
@article{gallo2022in_season,
title = {In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series},
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
volume = {195},
pages = {335-352},
year = {2023},
issn = {0924-2716},
doi = {https://doi.org/10.1016/j.isprsjprs.2022.12.005},
url = {https://www.sciencedirect.com/science/article/pii/S0924271622003203},
author = {Ignazio Gallo and Luigi Ranghetti and Nicola Landro and Riccardo {La Grassa} and Mirco Boschetti},
}
```
**NOTE: The demo doesn't work properly, we are working to fix the bugs!**
""")
file_uploaded = st.file_uploader(
"Upload a zip file containing a sample",
type=["zip"],
accept_multiple_files=False,
)
sample_path = None
tileids = None
st.paths = None
if file_uploaded is not None:
with zipfile.ZipFile(file_uploaded, "r") as z:
z.extractall(os.path.join("uploaded_samples", opt.years[0]))
tileids = [file_uploaded.name[:-4]]
# sample_path = os.path.join("uploaded_samples", opt.years[0], tileids[0])
sample_path = "uploaded_samples"
st.markdown('or use a demo sample')
col1, col2, col3, col4 = st.columns([1, 1, 1, 1])
with col1:
if st.button('sample 1'):
sample_path = 'demo_data/lombardia'
tileids = ['24']
with col2:
if st.button('sample 2'):
sample_path = 'demo_data/lombardia'
tileids = ['712']
with col3:
if st.button('sample 3'):
sample_path = 'demo_data/lombardia'
tileids = ['814']
with col4:
if st.button('sample 4'):
sample_path = 'demo_data/lombardia'
tileids = ['1509']
# paths = None
if sample_path is not None:
# st.markdown(f'elaborating {sample_path} ...')
validationdataset = SentinelDailyAnnualDatasetNoLabel(
sample_path,
opt.years,
opt.classes_path,
opt.sample_duration,
opt.win_size,
tileids=tileids)
validationdataloader = torch.utils.data.DataLoader(
validationdataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.workers)
st.markdown('Model prediction in progress ...')
out_dir = os.path.join(opt.result_path, "seg_maps")
if not os.path.exists(out_dir):
os.makedirs(out_dir)
for i, (x_dailies, dates, dirs_path) in enumerate(validationdataloader):
with torch.no_grad():
# x_dailies, dates, dirs_path = next(iter(validationdataloader))
# reshape merging the first two dimensions
x_dailies = x_dailies.view(-1, *x_dailies.shape[2:])
if torch.cuda.is_available():
x_dailies = x_dailies.cuda()
feat_daily, outs_daily = st.daily_model.forward(x_dailies)
# return to original size of batch and year
outs_daily = outs_daily.view(
opt.batch_size, opt.sample_duration, *outs_daily.shape[1:])
feat_daily = feat_daily.view(
opt.batch_size, opt.sample_duration, *feat_daily.shape[1:])
_, out_annual = st.annual_model.forward(feat_daily)
pred_annual = torch.argmax(out_annual, dim=1).squeeze(1)
pred_annual = pred_annual.cpu().numpy()
# Remapping the labels
pred_annual_nn = ids_to_labels(
validationdataloader, pred_annual).astype(numpy.uint8)
for batch in range(feat_daily.shape[0]):
# _, profile = read(os.path.join(dirs_path[batch], '20191230_MSAVI.tif')) # todo get the last image
_, tmp_path = get_patch_id(validationdataset.samples, 0)
dates = get_all_dates(
tmp_path, validationdataset.max_seq_length)
last_tif_path = os.path.join(tmp_path, dates[-1] + ".tif")
_, profile = read(last_tif_path)
profile["name"] = dirs_path[batch]
pth = dirs_path[batch].split(os.path.sep)[-3:]
full_pth_patch = os.path.join(
out_dir, pth[1] + '-' + pth[0], pth[2])
if not os.path.exists(full_pth_patch):
os.makedirs(full_pth_patch)
full_pth_pred = os.path.join(
full_pth_patch, 'patch-pred-nn.tif')
profile.update({
'nodata': None,
'dtype': 'uint8',
'count': 1})
with rasterio.open(full_pth_pred, 'w', **profile) as dst:
dst.write_band(1, pred_annual_nn[batch])
# patch_predictions = None
for ch in range(len(dates)):
soft_seg = outs_daily[batch, ch, :, :, :]
# transform probs into a hard segmentation
pred_daily = torch.argmax(soft_seg, dim=0)
pred_daily = pred_daily.cpu()
daily_pred = ids_to_labels(
validationdataloader, pred_daily).astype(numpy.uint8)
# if patch_predictions is None:
# patch_predictions = numpy.expand_dims(daily_pred, axis=0)
# else:
# patch_predictions = numpy.concatenate((patch_predictions, numpy.expand_dims(daily_pred, axis=0)),
# axis=0)
# save GT image in opt.root_path
full_pth_date = os.path.join(
full_pth_patch, dates[ch] + '-daily-pred.tif')
profile.update({
'nodata': None,
'dtype': 'uint8',
'count': 1})
with rasterio.open(full_pth_date, 'w', **profile) as dst:
dst.write_band(1, daily_pred)
st.markdown('End prediction')
# folder_out = "demo_data/results/seg_maps/example-lombardia/2"
folder_out = full_pth_patch # os.path.join("demo_data/results/seg_maps/"+opt.years[0]+"-lombardia/", tileids[0])
st.paths = os.listdir(folder_out)
st.paths.sort()
if st.paths is not None:
# folder_out = os.path.join("demo_data/results/seg_maps/example-lombardia/", tileids[0])
folder_src = os.path.join("demo_data/lombardia/", opt.years[0], tileids[0])
st.markdown("""
### Predictions
""")
# file_picker = st.selectbox("Select day predict (annual is patch-pred-nn.tif)",
# st.paths, index=st.paths.index('patch-pred-nn.tif'))
file_path = os.path.join(folder_out, 'patch-pred-nn.tif')
# print(file_path)
target, profile = read(file_path)
target = np.squeeze(target)
target = [classes_color_map[p] for p in target]
fig, ax = plt.subplots()
ax.imshow(target)
markdown_legend = ''
for c, l in zip(color_labels, labels_map):
# print(colors.to_hex(c))
markdown_legend += f'<div style="color:gray;background-color: {colors.to_hex(c)};">{l}</div><br>'
col1, col2 = st.columns([2,1])
with col1:
st.markdown("**Long-term (annual) prediction**")
st.pyplot(fig)
with col2:
st.markdown("**Legend**")
st.markdown(markdown_legend, unsafe_allow_html=True)
st.markdown("**Short-term (daily) predictions**")
img_full_paths = [os.path.join(folder_out, path) for path in st.paths if 'daily-pred' in path]
pred_dates = [path[:8] for path in st.paths if 'daily-pred' in path]
anim = load_daily_preds_as_animations(img_full_paths, pred_dates)
components.html(anim.to_jshtml(), height=600)
st.markdown("**Input time series**")
list_dir = os.listdir(folder_src)
list_dir.sort()
img_full_paths = [os.path.join(folder_src, f) for f in list_dir if f.endswith(".tif")]
pred_dates = [f[:8] for f in list_dir if f.endswith(".tif")]
anim_src = load_src_images_as_animations(img_full_paths, pred_dates)
components.html(anim_src.to_jshtml(), height=600)
# zip_url = hf_hub_url(repo_id="ARTeLab/DemoCropMapping", filename="demo_data/1509.zip")
# with open("demo_data/1509.zip", "rb") as f:
# bytes = f.read()
# b64 = base64.b64encode(bytes).decode()
# href = f'<a href="data:file/zip;base64,{b64}" download=\'1509.zip\'>\
# Click to download\
# </a>'
# st.sidebar.markdown(href, unsafe_allow_html=True)
# download_button_str = download_button(s, filename, f'Click here to download {filename}')
# st.markdown(download_button_str, unsafe_allow_html=True)
# with open('demo_data/1509.zip') as f:
# st.download_button('Download 1509.zip', f, file_name="demo_data/1509.zip")
st.markdown(f"""
## Lombardia Dataset
You can download other patches from the original dataset created and published on
[Kaggle](https://www.kaggle.com/datasets/ignazio/sentinel2-crop-mapping) and used in our paper.
## How to build an input file for the Demo
You can download the following zip example to better understand how to create a new sample to feed as input to the model. """)
with open("demo_data/1509.zip", "rb") as fp:
btn = st.download_button(
label="Download ZIP example",
data=fp,
file_name="1509.zip",
mime="application/octet-stream"
)
st.markdown(f"""
A sample is a time series of sentinel-2 images,
i.e. all images acquired by the satellite during a year.
A zip file must contain
- a geoTiff image of size _9 x 48 x 48_ for each date of the time series;
- the name of each geoTif must show the date like this example "20221225.tif" which represents the date 25 December 2022;
- each image must contain all sentinel-2 bands as reported in the [paper](https://www.sciencedirect.com/science/article/pii/S0924271622003203);
- all the images inside the zip file must be placed inside a directory (see ZIP example) where the name represents the name of the patch (for example "24"). )
""")
|