Spaces:
Runtime error
Runtime error
PelosiFilippo
commited on
Commit
·
d1721f9
1
Parent(s):
9946bad
First commit
Browse files- app.py +46 -0
- packages.txt +1 -0
- realesrgan/__pycache__/utils.cpython-37.pyc +0 -0
- realesrgan/utils.py +293 -0
- render0001.png +0 -0
- render0001_DC.png +0 -0
- render1546.png +0 -0
- render1546_DC.png +0 -0
- render1682.png +0 -0
- render1682_DC.png +0 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
5 |
+
from realesrgan.utils import RealESRGANer
|
6 |
+
|
7 |
+
# model load
|
8 |
+
netscale = 4
|
9 |
+
super_res_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
10 |
+
super_res_upsampler = RealESRGANer(scale=netscale, model_path='model_zoo/RealESRGAN_x4plus.pth', model=super_res_model, tile=0,
|
11 |
+
tile_pad=10, pre_pad=0, half=False, gpu_id=None)
|
12 |
+
fisheye_correction_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
13 |
+
fisheye_correction_upsampler = RealESRGANer(scale=netscale, model_path='model_zoo/RealESRGAN_x4plus_fine_tuned_400k.pth', model=fisheye_correction_model, tile=0,
|
14 |
+
tile_pad=10, pre_pad=0, half=False, gpu_id=None)
|
15 |
+
|
16 |
+
def predict(radio_btn, input_img):
|
17 |
+
out = None
|
18 |
+
|
19 |
+
# preprocess input
|
20 |
+
if(input_img is not None):
|
21 |
+
if(radio_btn == 'Super resolution'):
|
22 |
+
upsampler = super_res_upsampler
|
23 |
+
else:
|
24 |
+
upsampler = fisheye_correction_upsampler
|
25 |
+
output, _ = upsampler.enhance(input_img, outscale=4)
|
26 |
+
|
27 |
+
# convert to pil image
|
28 |
+
out = Image.fromarray(output)
|
29 |
+
return out
|
30 |
+
|
31 |
+
|
32 |
+
gr.Interface(
|
33 |
+
fn=predict,
|
34 |
+
inputs=[
|
35 |
+
gr.Radio(choices=["Super resolution", "Distortion correction"], value="Super resolution", label="Select task:"), gr.inputs.Image()
|
36 |
+
],
|
37 |
+
outputs=[
|
38 |
+
gr.inputs.Image()
|
39 |
+
],
|
40 |
+
title="Real-ESRGAN moon distortion",
|
41 |
+
description="Description of the app",
|
42 |
+
examples=[
|
43 |
+
["Super resolution", "render0001.png"], ["Super resolution", "render1546.png"], ["Super resolution", "render1682.png"],
|
44 |
+
["Distortion correction", "render0001_DC.png"], ["Distortion correction", "render1546_DC.png"], ["Distortion correction", "render1682_DC.png"]
|
45 |
+
]
|
46 |
+
).launch()
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python3-opencv
|
realesrgan/__pycache__/utils.cpython-37.pyc
ADDED
Binary file (8.42 kB). View file
|
|
realesrgan/utils.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import queue
|
6 |
+
import threading
|
7 |
+
import torch
|
8 |
+
from basicsr.utils.download_util import load_file_from_url
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
12 |
+
|
13 |
+
|
14 |
+
class RealESRGANer():
|
15 |
+
"""A helper class for upsampling images with RealESRGAN.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
|
19 |
+
model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
|
20 |
+
model (nn.Module): The defined network. Default: None.
|
21 |
+
tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
|
22 |
+
input images into tiles, and then process each of them. Finally, they will be merged into one image.
|
23 |
+
0 denotes for do not use tile. Default: 0.
|
24 |
+
tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
|
25 |
+
pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
|
26 |
+
half (float): Whether to use half precision during inference. Default: False.
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(self,
|
30 |
+
scale,
|
31 |
+
model_path,
|
32 |
+
model=None,
|
33 |
+
tile=0,
|
34 |
+
tile_pad=10,
|
35 |
+
pre_pad=10,
|
36 |
+
half=False,
|
37 |
+
device=None,
|
38 |
+
gpu_id=None):
|
39 |
+
self.scale = scale
|
40 |
+
self.tile_size = tile
|
41 |
+
self.tile_pad = tile_pad
|
42 |
+
self.pre_pad = pre_pad
|
43 |
+
self.mod_scale = None
|
44 |
+
self.half = half
|
45 |
+
|
46 |
+
# initialize model
|
47 |
+
if gpu_id:
|
48 |
+
self.device = torch.device(
|
49 |
+
f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu') if device is None else device
|
50 |
+
else:
|
51 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
52 |
+
# if the model_path starts with https, it will first download models to the folder: realesrgan/weights
|
53 |
+
if model_path.startswith('https://'):
|
54 |
+
model_path = load_file_from_url(
|
55 |
+
url=model_path, model_dir=os.path.join(ROOT_DIR, 'realesrgan/weights'), progress=True, file_name=None)
|
56 |
+
loadnet = torch.load(model_path, map_location=torch.device('cpu'))
|
57 |
+
# prefer to use params_ema
|
58 |
+
if 'params_ema' in loadnet:
|
59 |
+
keyname = 'params_ema'
|
60 |
+
else:
|
61 |
+
keyname = 'params'
|
62 |
+
model.load_state_dict(loadnet[keyname], strict=True)
|
63 |
+
model.eval()
|
64 |
+
self.model = model.to(self.device)
|
65 |
+
if self.half:
|
66 |
+
self.model = self.model.half()
|
67 |
+
|
68 |
+
def pre_process(self, img):
|
69 |
+
"""Pre-process, such as pre-pad and mod pad, so that the images can be divisible
|
70 |
+
"""
|
71 |
+
img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
|
72 |
+
self.img = img.unsqueeze(0).to(self.device)
|
73 |
+
if self.half:
|
74 |
+
self.img = self.img.half()
|
75 |
+
|
76 |
+
# pre_pad
|
77 |
+
if self.pre_pad != 0:
|
78 |
+
self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
|
79 |
+
# mod pad for divisible borders
|
80 |
+
if self.scale == 2:
|
81 |
+
self.mod_scale = 2
|
82 |
+
elif self.scale == 1:
|
83 |
+
self.mod_scale = 4
|
84 |
+
if self.mod_scale is not None:
|
85 |
+
self.mod_pad_h, self.mod_pad_w = 0, 0
|
86 |
+
_, _, h, w = self.img.size()
|
87 |
+
if (h % self.mod_scale != 0):
|
88 |
+
self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
|
89 |
+
if (w % self.mod_scale != 0):
|
90 |
+
self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
|
91 |
+
self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
|
92 |
+
|
93 |
+
def process(self):
|
94 |
+
# model inference
|
95 |
+
self.output = self.model(self.img)
|
96 |
+
|
97 |
+
def tile_process(self):
|
98 |
+
"""It will first crop input images to tiles, and then process each tile.
|
99 |
+
Finally, all the processed tiles are merged into one images.
|
100 |
+
|
101 |
+
Modified from: https://github.com/ata4/esrgan-launcher
|
102 |
+
"""
|
103 |
+
batch, channel, height, width = self.img.shape
|
104 |
+
output_height = height * self.scale
|
105 |
+
output_width = width * self.scale
|
106 |
+
output_shape = (batch, channel, output_height, output_width)
|
107 |
+
|
108 |
+
# start with black image
|
109 |
+
self.output = self.img.new_zeros(output_shape)
|
110 |
+
tiles_x = math.ceil(width / self.tile_size)
|
111 |
+
tiles_y = math.ceil(height / self.tile_size)
|
112 |
+
|
113 |
+
# loop over all tiles
|
114 |
+
for y in range(tiles_y):
|
115 |
+
for x in range(tiles_x):
|
116 |
+
# extract tile from input image
|
117 |
+
ofs_x = x * self.tile_size
|
118 |
+
ofs_y = y * self.tile_size
|
119 |
+
# input tile area on total image
|
120 |
+
input_start_x = ofs_x
|
121 |
+
input_end_x = min(ofs_x + self.tile_size, width)
|
122 |
+
input_start_y = ofs_y
|
123 |
+
input_end_y = min(ofs_y + self.tile_size, height)
|
124 |
+
|
125 |
+
# input tile area on total image with padding
|
126 |
+
input_start_x_pad = max(input_start_x - self.tile_pad, 0)
|
127 |
+
input_end_x_pad = min(input_end_x + self.tile_pad, width)
|
128 |
+
input_start_y_pad = max(input_start_y - self.tile_pad, 0)
|
129 |
+
input_end_y_pad = min(input_end_y + self.tile_pad, height)
|
130 |
+
|
131 |
+
# input tile dimensions
|
132 |
+
input_tile_width = input_end_x - input_start_x
|
133 |
+
input_tile_height = input_end_y - input_start_y
|
134 |
+
tile_idx = y * tiles_x + x + 1
|
135 |
+
input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
|
136 |
+
|
137 |
+
# upscale tile
|
138 |
+
try:
|
139 |
+
with torch.no_grad():
|
140 |
+
output_tile = self.model(input_tile)
|
141 |
+
except RuntimeError as error:
|
142 |
+
print('Error', error)
|
143 |
+
print(f'\tTile {tile_idx}/{tiles_x * tiles_y}')
|
144 |
+
|
145 |
+
# output tile area on total image
|
146 |
+
output_start_x = input_start_x * self.scale
|
147 |
+
output_end_x = input_end_x * self.scale
|
148 |
+
output_start_y = input_start_y * self.scale
|
149 |
+
output_end_y = input_end_y * self.scale
|
150 |
+
|
151 |
+
# output tile area without padding
|
152 |
+
output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
|
153 |
+
output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
|
154 |
+
output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
|
155 |
+
output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
|
156 |
+
|
157 |
+
# put tile into output image
|
158 |
+
self.output[:, :, output_start_y:output_end_y,
|
159 |
+
output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
|
160 |
+
output_start_x_tile:output_end_x_tile]
|
161 |
+
|
162 |
+
def post_process(self):
|
163 |
+
# remove extra pad
|
164 |
+
if self.mod_scale is not None:
|
165 |
+
_, _, h, w = self.output.size()
|
166 |
+
self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
|
167 |
+
# remove prepad
|
168 |
+
if self.pre_pad != 0:
|
169 |
+
_, _, h, w = self.output.size()
|
170 |
+
self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
|
171 |
+
return self.output
|
172 |
+
|
173 |
+
@torch.no_grad()
|
174 |
+
def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'):
|
175 |
+
h_input, w_input = img.shape[0:2]
|
176 |
+
# img: numpy
|
177 |
+
img = img.astype(np.float32)
|
178 |
+
if np.max(img) > 256: # 16-bit image
|
179 |
+
max_range = 65535
|
180 |
+
print('\tInput is a 16-bit image')
|
181 |
+
else:
|
182 |
+
max_range = 255
|
183 |
+
img = img / max_range
|
184 |
+
if len(img.shape) == 2: # gray image
|
185 |
+
img_mode = 'L'
|
186 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
187 |
+
elif img.shape[2] == 4: # RGBA image with alpha channel
|
188 |
+
img_mode = 'RGBA'
|
189 |
+
alpha = img[:, :, 3]
|
190 |
+
img = img[:, :, 0:3]
|
191 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
192 |
+
if alpha_upsampler == 'realesrgan':
|
193 |
+
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
|
194 |
+
else:
|
195 |
+
img_mode = 'RGB'
|
196 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
197 |
+
|
198 |
+
# ------------------- process image (without the alpha channel) ------------------- #
|
199 |
+
self.pre_process(img)
|
200 |
+
if self.tile_size > 0:
|
201 |
+
self.tile_process()
|
202 |
+
else:
|
203 |
+
self.process()
|
204 |
+
output_img = self.post_process()
|
205 |
+
output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
206 |
+
output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
|
207 |
+
if img_mode == 'L':
|
208 |
+
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
|
209 |
+
|
210 |
+
# ------------------- process the alpha channel if necessary ------------------- #
|
211 |
+
if img_mode == 'RGBA':
|
212 |
+
if alpha_upsampler == 'realesrgan':
|
213 |
+
self.pre_process(alpha)
|
214 |
+
if self.tile_size > 0:
|
215 |
+
self.tile_process()
|
216 |
+
else:
|
217 |
+
self.process()
|
218 |
+
output_alpha = self.post_process()
|
219 |
+
output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
220 |
+
output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
|
221 |
+
output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
|
222 |
+
else: # use the cv2 resize for alpha channel
|
223 |
+
h, w = alpha.shape[0:2]
|
224 |
+
output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR)
|
225 |
+
|
226 |
+
# merge the alpha channel
|
227 |
+
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
|
228 |
+
output_img[:, :, 3] = output_alpha
|
229 |
+
|
230 |
+
# ------------------------------ return ------------------------------ #
|
231 |
+
if max_range == 65535: # 16-bit image
|
232 |
+
output = (output_img * 65535.0).round().astype(np.uint16)
|
233 |
+
else:
|
234 |
+
output = (output_img * 255.0).round().astype(np.uint8)
|
235 |
+
|
236 |
+
if outscale is not None and outscale != float(self.scale):
|
237 |
+
output = cv2.resize(
|
238 |
+
output, (
|
239 |
+
int(w_input * outscale),
|
240 |
+
int(h_input * outscale),
|
241 |
+
), interpolation=cv2.INTER_LANCZOS4)
|
242 |
+
|
243 |
+
return output, img_mode
|
244 |
+
|
245 |
+
|
246 |
+
class PrefetchReader(threading.Thread):
|
247 |
+
"""Prefetch images.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
img_list (list[str]): A image list of image paths to be read.
|
251 |
+
num_prefetch_queue (int): Number of prefetch queue.
|
252 |
+
"""
|
253 |
+
|
254 |
+
def __init__(self, img_list, num_prefetch_queue):
|
255 |
+
super().__init__()
|
256 |
+
self.que = queue.Queue(num_prefetch_queue)
|
257 |
+
self.img_list = img_list
|
258 |
+
|
259 |
+
def run(self):
|
260 |
+
for img_path in self.img_list:
|
261 |
+
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
262 |
+
self.que.put(img)
|
263 |
+
|
264 |
+
self.que.put(None)
|
265 |
+
|
266 |
+
def __next__(self):
|
267 |
+
next_item = self.que.get()
|
268 |
+
if next_item is None:
|
269 |
+
raise StopIteration
|
270 |
+
return next_item
|
271 |
+
|
272 |
+
def __iter__(self):
|
273 |
+
return self
|
274 |
+
|
275 |
+
|
276 |
+
class IOConsumer(threading.Thread):
|
277 |
+
|
278 |
+
def __init__(self, opt, que, qid):
|
279 |
+
super().__init__()
|
280 |
+
self._queue = que
|
281 |
+
self.qid = qid
|
282 |
+
self.opt = opt
|
283 |
+
|
284 |
+
def run(self):
|
285 |
+
while True:
|
286 |
+
msg = self._queue.get()
|
287 |
+
if isinstance(msg, str) and msg == 'quit':
|
288 |
+
break
|
289 |
+
|
290 |
+
output = msg['output']
|
291 |
+
save_path = msg['save_path']
|
292 |
+
cv2.imwrite(save_path, output)
|
293 |
+
print(f'IO worker {self.qid} is done.')
|
render0001.png
ADDED
render0001_DC.png
ADDED
render1546.png
ADDED
render1546_DC.png
ADDED
render1682.png
ADDED
render1682_DC.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
basicsr>=1.3.3.11
|
2 |
+
facexlib>=0.2.0.3
|
3 |
+
gfpgan>=0.2.1
|
4 |
+
numpy
|
5 |
+
opencv-python
|
6 |
+
Pillow
|
7 |
+
torch>=1.7
|
8 |
+
torchvision
|
9 |
+
tqdm
|