PelosiFilippo commited on
Commit
d1721f9
·
1 Parent(s): 9946bad

First commit

Browse files
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+
4
+ from basicsr.archs.rrdbnet_arch import RRDBNet
5
+ from realesrgan.utils import RealESRGANer
6
+
7
+ # model load
8
+ netscale = 4
9
+ super_res_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
10
+ super_res_upsampler = RealESRGANer(scale=netscale, model_path='model_zoo/RealESRGAN_x4plus.pth', model=super_res_model, tile=0,
11
+ tile_pad=10, pre_pad=0, half=False, gpu_id=None)
12
+ fisheye_correction_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
13
+ fisheye_correction_upsampler = RealESRGANer(scale=netscale, model_path='model_zoo/RealESRGAN_x4plus_fine_tuned_400k.pth', model=fisheye_correction_model, tile=0,
14
+ tile_pad=10, pre_pad=0, half=False, gpu_id=None)
15
+
16
+ def predict(radio_btn, input_img):
17
+ out = None
18
+
19
+ # preprocess input
20
+ if(input_img is not None):
21
+ if(radio_btn == 'Super resolution'):
22
+ upsampler = super_res_upsampler
23
+ else:
24
+ upsampler = fisheye_correction_upsampler
25
+ output, _ = upsampler.enhance(input_img, outscale=4)
26
+
27
+ # convert to pil image
28
+ out = Image.fromarray(output)
29
+ return out
30
+
31
+
32
+ gr.Interface(
33
+ fn=predict,
34
+ inputs=[
35
+ gr.Radio(choices=["Super resolution", "Distortion correction"], value="Super resolution", label="Select task:"), gr.inputs.Image()
36
+ ],
37
+ outputs=[
38
+ gr.inputs.Image()
39
+ ],
40
+ title="Real-ESRGAN moon distortion",
41
+ description="Description of the app",
42
+ examples=[
43
+ ["Super resolution", "render0001.png"], ["Super resolution", "render1546.png"], ["Super resolution", "render1682.png"],
44
+ ["Distortion correction", "render0001_DC.png"], ["Distortion correction", "render1546_DC.png"], ["Distortion correction", "render1682_DC.png"]
45
+ ]
46
+ ).launch()
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ python3-opencv
realesrgan/__pycache__/utils.cpython-37.pyc ADDED
Binary file (8.42 kB). View file
 
realesrgan/utils.py ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import math
3
+ import numpy as np
4
+ import os
5
+ import queue
6
+ import threading
7
+ import torch
8
+ from basicsr.utils.download_util import load_file_from_url
9
+ from torch.nn import functional as F
10
+
11
+ ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
12
+
13
+
14
+ class RealESRGANer():
15
+ """A helper class for upsampling images with RealESRGAN.
16
+
17
+ Args:
18
+ scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
19
+ model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
20
+ model (nn.Module): The defined network. Default: None.
21
+ tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
22
+ input images into tiles, and then process each of them. Finally, they will be merged into one image.
23
+ 0 denotes for do not use tile. Default: 0.
24
+ tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
25
+ pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
26
+ half (float): Whether to use half precision during inference. Default: False.
27
+ """
28
+
29
+ def __init__(self,
30
+ scale,
31
+ model_path,
32
+ model=None,
33
+ tile=0,
34
+ tile_pad=10,
35
+ pre_pad=10,
36
+ half=False,
37
+ device=None,
38
+ gpu_id=None):
39
+ self.scale = scale
40
+ self.tile_size = tile
41
+ self.tile_pad = tile_pad
42
+ self.pre_pad = pre_pad
43
+ self.mod_scale = None
44
+ self.half = half
45
+
46
+ # initialize model
47
+ if gpu_id:
48
+ self.device = torch.device(
49
+ f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu') if device is None else device
50
+ else:
51
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
52
+ # if the model_path starts with https, it will first download models to the folder: realesrgan/weights
53
+ if model_path.startswith('https://'):
54
+ model_path = load_file_from_url(
55
+ url=model_path, model_dir=os.path.join(ROOT_DIR, 'realesrgan/weights'), progress=True, file_name=None)
56
+ loadnet = torch.load(model_path, map_location=torch.device('cpu'))
57
+ # prefer to use params_ema
58
+ if 'params_ema' in loadnet:
59
+ keyname = 'params_ema'
60
+ else:
61
+ keyname = 'params'
62
+ model.load_state_dict(loadnet[keyname], strict=True)
63
+ model.eval()
64
+ self.model = model.to(self.device)
65
+ if self.half:
66
+ self.model = self.model.half()
67
+
68
+ def pre_process(self, img):
69
+ """Pre-process, such as pre-pad and mod pad, so that the images can be divisible
70
+ """
71
+ img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
72
+ self.img = img.unsqueeze(0).to(self.device)
73
+ if self.half:
74
+ self.img = self.img.half()
75
+
76
+ # pre_pad
77
+ if self.pre_pad != 0:
78
+ self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
79
+ # mod pad for divisible borders
80
+ if self.scale == 2:
81
+ self.mod_scale = 2
82
+ elif self.scale == 1:
83
+ self.mod_scale = 4
84
+ if self.mod_scale is not None:
85
+ self.mod_pad_h, self.mod_pad_w = 0, 0
86
+ _, _, h, w = self.img.size()
87
+ if (h % self.mod_scale != 0):
88
+ self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
89
+ if (w % self.mod_scale != 0):
90
+ self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
91
+ self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
92
+
93
+ def process(self):
94
+ # model inference
95
+ self.output = self.model(self.img)
96
+
97
+ def tile_process(self):
98
+ """It will first crop input images to tiles, and then process each tile.
99
+ Finally, all the processed tiles are merged into one images.
100
+
101
+ Modified from: https://github.com/ata4/esrgan-launcher
102
+ """
103
+ batch, channel, height, width = self.img.shape
104
+ output_height = height * self.scale
105
+ output_width = width * self.scale
106
+ output_shape = (batch, channel, output_height, output_width)
107
+
108
+ # start with black image
109
+ self.output = self.img.new_zeros(output_shape)
110
+ tiles_x = math.ceil(width / self.tile_size)
111
+ tiles_y = math.ceil(height / self.tile_size)
112
+
113
+ # loop over all tiles
114
+ for y in range(tiles_y):
115
+ for x in range(tiles_x):
116
+ # extract tile from input image
117
+ ofs_x = x * self.tile_size
118
+ ofs_y = y * self.tile_size
119
+ # input tile area on total image
120
+ input_start_x = ofs_x
121
+ input_end_x = min(ofs_x + self.tile_size, width)
122
+ input_start_y = ofs_y
123
+ input_end_y = min(ofs_y + self.tile_size, height)
124
+
125
+ # input tile area on total image with padding
126
+ input_start_x_pad = max(input_start_x - self.tile_pad, 0)
127
+ input_end_x_pad = min(input_end_x + self.tile_pad, width)
128
+ input_start_y_pad = max(input_start_y - self.tile_pad, 0)
129
+ input_end_y_pad = min(input_end_y + self.tile_pad, height)
130
+
131
+ # input tile dimensions
132
+ input_tile_width = input_end_x - input_start_x
133
+ input_tile_height = input_end_y - input_start_y
134
+ tile_idx = y * tiles_x + x + 1
135
+ input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
136
+
137
+ # upscale tile
138
+ try:
139
+ with torch.no_grad():
140
+ output_tile = self.model(input_tile)
141
+ except RuntimeError as error:
142
+ print('Error', error)
143
+ print(f'\tTile {tile_idx}/{tiles_x * tiles_y}')
144
+
145
+ # output tile area on total image
146
+ output_start_x = input_start_x * self.scale
147
+ output_end_x = input_end_x * self.scale
148
+ output_start_y = input_start_y * self.scale
149
+ output_end_y = input_end_y * self.scale
150
+
151
+ # output tile area without padding
152
+ output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
153
+ output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
154
+ output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
155
+ output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
156
+
157
+ # put tile into output image
158
+ self.output[:, :, output_start_y:output_end_y,
159
+ output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
160
+ output_start_x_tile:output_end_x_tile]
161
+
162
+ def post_process(self):
163
+ # remove extra pad
164
+ if self.mod_scale is not None:
165
+ _, _, h, w = self.output.size()
166
+ self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
167
+ # remove prepad
168
+ if self.pre_pad != 0:
169
+ _, _, h, w = self.output.size()
170
+ self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
171
+ return self.output
172
+
173
+ @torch.no_grad()
174
+ def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'):
175
+ h_input, w_input = img.shape[0:2]
176
+ # img: numpy
177
+ img = img.astype(np.float32)
178
+ if np.max(img) > 256: # 16-bit image
179
+ max_range = 65535
180
+ print('\tInput is a 16-bit image')
181
+ else:
182
+ max_range = 255
183
+ img = img / max_range
184
+ if len(img.shape) == 2: # gray image
185
+ img_mode = 'L'
186
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
187
+ elif img.shape[2] == 4: # RGBA image with alpha channel
188
+ img_mode = 'RGBA'
189
+ alpha = img[:, :, 3]
190
+ img = img[:, :, 0:3]
191
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
192
+ if alpha_upsampler == 'realesrgan':
193
+ alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
194
+ else:
195
+ img_mode = 'RGB'
196
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
197
+
198
+ # ------------------- process image (without the alpha channel) ------------------- #
199
+ self.pre_process(img)
200
+ if self.tile_size > 0:
201
+ self.tile_process()
202
+ else:
203
+ self.process()
204
+ output_img = self.post_process()
205
+ output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy()
206
+ output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
207
+ if img_mode == 'L':
208
+ output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
209
+
210
+ # ------------------- process the alpha channel if necessary ------------------- #
211
+ if img_mode == 'RGBA':
212
+ if alpha_upsampler == 'realesrgan':
213
+ self.pre_process(alpha)
214
+ if self.tile_size > 0:
215
+ self.tile_process()
216
+ else:
217
+ self.process()
218
+ output_alpha = self.post_process()
219
+ output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
220
+ output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
221
+ output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
222
+ else: # use the cv2 resize for alpha channel
223
+ h, w = alpha.shape[0:2]
224
+ output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR)
225
+
226
+ # merge the alpha channel
227
+ output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
228
+ output_img[:, :, 3] = output_alpha
229
+
230
+ # ------------------------------ return ------------------------------ #
231
+ if max_range == 65535: # 16-bit image
232
+ output = (output_img * 65535.0).round().astype(np.uint16)
233
+ else:
234
+ output = (output_img * 255.0).round().astype(np.uint8)
235
+
236
+ if outscale is not None and outscale != float(self.scale):
237
+ output = cv2.resize(
238
+ output, (
239
+ int(w_input * outscale),
240
+ int(h_input * outscale),
241
+ ), interpolation=cv2.INTER_LANCZOS4)
242
+
243
+ return output, img_mode
244
+
245
+
246
+ class PrefetchReader(threading.Thread):
247
+ """Prefetch images.
248
+
249
+ Args:
250
+ img_list (list[str]): A image list of image paths to be read.
251
+ num_prefetch_queue (int): Number of prefetch queue.
252
+ """
253
+
254
+ def __init__(self, img_list, num_prefetch_queue):
255
+ super().__init__()
256
+ self.que = queue.Queue(num_prefetch_queue)
257
+ self.img_list = img_list
258
+
259
+ def run(self):
260
+ for img_path in self.img_list:
261
+ img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
262
+ self.que.put(img)
263
+
264
+ self.que.put(None)
265
+
266
+ def __next__(self):
267
+ next_item = self.que.get()
268
+ if next_item is None:
269
+ raise StopIteration
270
+ return next_item
271
+
272
+ def __iter__(self):
273
+ return self
274
+
275
+
276
+ class IOConsumer(threading.Thread):
277
+
278
+ def __init__(self, opt, que, qid):
279
+ super().__init__()
280
+ self._queue = que
281
+ self.qid = qid
282
+ self.opt = opt
283
+
284
+ def run(self):
285
+ while True:
286
+ msg = self._queue.get()
287
+ if isinstance(msg, str) and msg == 'quit':
288
+ break
289
+
290
+ output = msg['output']
291
+ save_path = msg['save_path']
292
+ cv2.imwrite(save_path, output)
293
+ print(f'IO worker {self.qid} is done.')
render0001.png ADDED
render0001_DC.png ADDED
render1546.png ADDED
render1546_DC.png ADDED
render1682.png ADDED
render1682_DC.png ADDED
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ basicsr>=1.3.3.11
2
+ facexlib>=0.2.0.3
3
+ gfpgan>=0.2.1
4
+ numpy
5
+ opencv-python
6
+ Pillow
7
+ torch>=1.7
8
+ torchvision
9
+ tqdm