PelosiFilippo's picture
Fix 'super_res_model is not defined' error
1fed0d2
import gradio as gr
from PIL import Image
import _thread
import torch
import numpy as np
from models.network_swinir import SwinIR as net
# model load
def load_model():
global super_res_model
global device
param_key_g = 'params_ema'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
super_res_model = net(upscale=4, in_chans=3, img_size=64, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240,
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
super_res_pretrained_model = torch.load("model_zoo/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_PSNR.pth")
super_res_model.load_state_dict(super_res_pretrained_model[param_key_g] if param_key_g in super_res_pretrained_model.keys() else super_res_pretrained_model, strict=True)
super_res_model.eval()
super_res_model=None
_thread.start_new_thread(load_model, tuple())
def predict(input_img):
out = None
# preprocess input
if(input_img is not None and super_res_model is not None):
# model predict
img_lq = input_img.astype(np.float32) / 255
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB
# inference
window_size = 8
model = super_res_model.to(device)
with torch.no_grad():
# pad input image to be a multiple of window_size
_, _, h_old, w_old = img_lq.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
output = test(model, img_lq)
output = output[..., :h_old * 4, :w_old * 4]
# process image
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
# convert to pil image
out = Image.fromarray(output)
return out
def test(model, img_lq):
# test the image tile by tile
b, c, h, w = img_lq.size()
tile = min(800, h, w)
tile_overlap = 32
sf = 4
stride = tile - tile_overlap
h_idx_list = list(range(0, h-tile, stride)) + [h-tile]
w_idx_list = list(range(0, w-tile, stride)) + [w-tile]
E = torch.zeros(b, c, h*sf, w*sf).type_as(img_lq)
W = torch.zeros_like(E)
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = img_lq[..., h_idx:h_idx+tile, w_idx:w_idx+tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch)
W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask)
output = E.div_(W)
return output
gr.Interface(
fn=predict,
inputs=[
gr.inputs.Image()
],
outputs=[
gr.inputs.Image()
],
title="SwinIR moon super resolution",
description="Description of the app",
examples=[
"render0001.png", "render1546.png", "render1682.png"
]
).launch()