Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import _thread | |
import torch | |
import numpy as np | |
from models.network_swinir import SwinIR as net | |
# model load | |
def load_model(): | |
global super_res_model | |
global device | |
param_key_g = 'params_ema' | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
super_res_model = net(upscale=4, in_chans=3, img_size=64, window_size=8, | |
img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240, | |
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], | |
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv') | |
super_res_pretrained_model = torch.load("model_zoo/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_PSNR.pth") | |
super_res_model.load_state_dict(super_res_pretrained_model[param_key_g] if param_key_g in super_res_pretrained_model.keys() else super_res_pretrained_model, strict=True) | |
super_res_model.eval() | |
super_res_model=None | |
_thread.start_new_thread(load_model, tuple()) | |
def predict(input_img): | |
out = None | |
# preprocess input | |
if(input_img is not None and super_res_model is not None): | |
# model predict | |
img_lq = input_img.astype(np.float32) / 255 | |
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB | |
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB | |
# inference | |
window_size = 8 | |
model = super_res_model.to(device) | |
with torch.no_grad(): | |
# pad input image to be a multiple of window_size | |
_, _, h_old, w_old = img_lq.size() | |
h_pad = (h_old // window_size + 1) * window_size - h_old | |
w_pad = (w_old // window_size + 1) * window_size - w_old | |
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :] | |
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad] | |
output = test(model, img_lq) | |
output = output[..., :h_old * 4, :w_old * 4] | |
# process image | |
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() | |
if output.ndim == 3: | |
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR | |
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 | |
# convert to pil image | |
out = Image.fromarray(output) | |
return out | |
def test(model, img_lq): | |
# test the image tile by tile | |
b, c, h, w = img_lq.size() | |
tile = min(800, h, w) | |
tile_overlap = 32 | |
sf = 4 | |
stride = tile - tile_overlap | |
h_idx_list = list(range(0, h-tile, stride)) + [h-tile] | |
w_idx_list = list(range(0, w-tile, stride)) + [w-tile] | |
E = torch.zeros(b, c, h*sf, w*sf).type_as(img_lq) | |
W = torch.zeros_like(E) | |
for h_idx in h_idx_list: | |
for w_idx in w_idx_list: | |
in_patch = img_lq[..., h_idx:h_idx+tile, w_idx:w_idx+tile] | |
out_patch = model(in_patch) | |
out_patch_mask = torch.ones_like(out_patch) | |
E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch) | |
W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask) | |
output = E.div_(W) | |
return output | |
gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.inputs.Image() | |
], | |
outputs=[ | |
gr.inputs.Image() | |
], | |
title="SwinIR moon super resolution", | |
description="Description of the app", | |
examples=[ | |
"render0001.png", "render1546.png", "render1682.png" | |
] | |
).launch() | |