File size: 8,352 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import math
from typing import Any, List, Optional, Tuple, Union
import torch

from wenet.transformer.search import DecodeResult
from wenet.utils.mask import (make_non_pad_mask, mask_finished_preds,
                              mask_finished_scores)


def _isChinese(ch: str):
    if '\u4e00' <= ch <= '\u9fff' or '\u0030' <= ch <= '\u0039' or ch == '@':
        return True
    return False


def _isAllChinese(word: Union[List[Any], str]):
    word_lists = []
    for i in word:
        cur = i.replace(' ', '')
        cur = cur.replace('</s>', '')
        cur = cur.replace('<s>', '')
        cur = cur.replace('<unk>', '')
        cur = cur.replace('<OOV>', '')
        word_lists.append(cur)

    if len(word_lists) == 0:
        return False

    for ch in word_lists:
        if _isChinese(ch) is False:
            return False
    return True


def _isAllAlpha(word: Union[List[Any], str]):
    word_lists = []
    for i in word:
        cur = i.replace(' ', '')
        cur = cur.replace('</s>', '')
        cur = cur.replace('<s>', '')
        cur = cur.replace('<unk>', '')
        cur = cur.replace('<OOV>', '')
        word_lists.append(cur)

    if len(word_lists) == 0:
        return False

    for ch in word_lists:
        if ch.isalpha() is False and ch != "'":
            return False
        elif ch.isalpha() is True and _isChinese(ch) is True:
            return False

    return True


def paraformer_beautify_result(tokens: List[str]) -> str:
    middle_lists = []
    word_lists = []
    word_item = ''

    # wash words lists
    for token in tokens:
        if token in ['<sos>', '<eos>', '<blank>']:
            continue
        else:
            middle_lists.append(token)

    # all chinese characters
    if _isAllChinese(middle_lists):
        for _, ch in enumerate(middle_lists):
            word_lists.append(ch.replace(' ', ''))

    # all alpha characters
    elif _isAllAlpha(middle_lists):
        for _, ch in enumerate(middle_lists):
            word = ''
            if '@@' in ch:
                word = ch.replace('@@', '')
                word_item += word
            else:
                word_item += ch
                word_lists.append(word_item)
                word_lists.append(' ')
                word_item = ''

    # mix characters
    else:
        alpha_blank = False
        for _, ch in enumerate(middle_lists):
            word = ''
            if _isAllChinese(ch):
                if alpha_blank is True:
                    word_lists.pop()
                word_lists.append(ch)
                alpha_blank = False
            elif '@@' in ch:
                word = ch.replace('@@', '')
                word_item += word
                alpha_blank = False
            elif _isAllAlpha(ch):
                word_item += ch
                word_lists.append(word_item)
                word_lists.append(' ')
                word_item = ''
                alpha_blank = True
            else:
                word_lists.append(ch)
                alpha_blank = False
    return ''.join(word_lists).strip()


def gen_timestamps_from_peak(cif_peaks: List[int],
                             num_frames: int,
                             frame_rate=0.02):
    START_END_THRESHOLD = 5
    MAX_TOKEN_DURATION = 14
    force_time_shift = -0.5
    fire_place = [peak + force_time_shift for peak in cif_peaks]
    times = []
    for i in range(len(fire_place) - 1):
        if MAX_TOKEN_DURATION < 0 or fire_place[
                i + 1] - fire_place[i] <= MAX_TOKEN_DURATION:
            times.append(
                [fire_place[i] * frame_rate, fire_place[i + 1] * frame_rate])
        else:
            split = fire_place[i] + MAX_TOKEN_DURATION
            times.append([fire_place[i] * frame_rate, split * frame_rate])
    if len(times) > 0:
        if num_frames - fire_place[-1] > START_END_THRESHOLD:
            end = (num_frames + fire_place[-1]) * 0.5
            times[-1][1] = end * frame_rate
            times.append([end * frame_rate, num_frames * frame_rate])
        else:
            times[-1][1] = num_frames * frame_rate
    return times


def paraformer_greedy_search(
        decoder_out: torch.Tensor,
        decoder_out_lens: torch.Tensor,
        cif_peaks: Optional[torch.Tensor] = None) -> List[DecodeResult]:
    batch_size = decoder_out.shape[0]
    maxlen = decoder_out.size(1)
    topk_prob, topk_index = decoder_out.topk(1, dim=2)
    topk_index = topk_index.view(batch_size, maxlen)  # (B, maxlen)
    topk_prob = topk_prob.view(batch_size, maxlen)
    results: List[DecodeResult] = []
    topk_index = topk_index.cpu().tolist()
    topk_prob = topk_prob.cpu().tolist()
    decoder_out_lens = decoder_out_lens.cpu().numpy()
    for (i, hyp) in enumerate(topk_index):
        confidence = 0.0
        tokens_confidence = []
        lens = decoder_out_lens[i]
        for logp in topk_prob[i][:lens]:
            tokens_confidence.append(math.exp(logp))
            confidence += logp
        r = DecodeResult(hyp[:lens],
                         tokens_confidence=tokens_confidence,
                         confidence=math.exp(confidence / lens))
        results.append(r)

    if cif_peaks is not None:
        for (b, peaks) in enumerate(cif_peaks):
            result = results[b]
            times = []
            n_token = 0
            for (i, peak) in enumerate(peaks):
                if n_token >= len(result.tokens):
                    break
                if peak > 1 - 1e-4:
                    times.append(i)
                    n_token += 1
            result.times = times
            assert len(result.times) == len(result.tokens)
    return results


def paraformer_beam_search(decoder_out: torch.Tensor,
                           decoder_out_lens: torch.Tensor,
                           beam_size: int = 10,
                           eos: int = -1) -> List[DecodeResult]:
    mask = make_non_pad_mask(decoder_out_lens)
    indices, _ = _batch_beam_search(decoder_out,
                                    mask,
                                    beam_size=beam_size,
                                    eos=eos)

    best_hyps = indices[:, 0, :].cpu()
    decoder_out_lens = decoder_out_lens.cpu()
    results = []
    # TODO(Mddct): scores, times etc
    for (i, hyp) in enumerate(best_hyps.tolist()):
        r = DecodeResult(hyp[:decoder_out_lens.numpy()[i]])
        results.append(r)
    return results


def _batch_beam_search(
    logit: torch.Tensor,
    masks: torch.Tensor,
    beam_size: int = 10,
    eos: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """ Perform batch beam search

        Args:
            logit: shape (batch_size, seq_length, vocab_size)
            masks: shape (batch_size, seq_length)
            beam_size: beam size

        Returns:
            indices: shape (batch_size, beam_size, seq_length)
            log_prob: shape (batch_size, beam_size)

        """

    batch_size, seq_length, vocab_size = logit.shape
    masks = ~masks
    # beam search
    with torch.no_grad():
        # b,t,v
        log_post = torch.nn.functional.log_softmax(logit, dim=-1)
        # b,k
        log_prob, indices = log_post[:, 0, :].topk(beam_size, sorted=True)
        end_flag = torch.eq(masks[:, 0], 1).view(-1, 1)
        # mask predictor and scores if end
        log_prob = mask_finished_scores(log_prob, end_flag)
        indices = mask_finished_preds(indices, end_flag, eos)
        # b,k,1
        indices = indices.unsqueeze(-1)

        for i in range(1, seq_length):
            # b,v
            scores = mask_finished_scores(log_post[:, i, :], end_flag)
            # b,v -> b,k,v
            topk_scores = scores.unsqueeze(1).repeat(1, beam_size, 1)
            # b,k,1 + b,k,v -> b,k,v
            top_k_logp = log_prob.unsqueeze(-1) + topk_scores

            # b,k,v -> b,k*v -> b,k
            log_prob, top_k_index = top_k_logp.view(batch_size,
                                                    -1).topk(beam_size,
                                                             sorted=True)

            index = mask_finished_preds(top_k_index, end_flag, eos)

            indices = torch.cat([indices, index.unsqueeze(-1)], dim=-1)

            end_flag = torch.eq(masks[:, i], 1).view(-1, 1)

        indices = torch.fmod(indices, vocab_size)

    return indices, log_prob