Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,166 Bytes
568e264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
# Copyright (c) 2023 Binbin Zhang (binbzha@qq.com)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from collections import defaultdict
from typing import List, Dict
import torch
from torch.nn.utils.rnn import pad_sequence
from wenet.utils.common import (add_sos_eos, log_add, add_whisper_tokens,
mask_to_bias)
from wenet.utils.ctc_utils import remove_duplicates_and_blank
from wenet.utils.mask import (make_pad_mask, mask_finished_preds,
mask_finished_scores, subsequent_mask)
from wenet.utils.context_graph import ContextGraph, ContextState
class DecodeResult:
def __init__(self,
tokens: List[int],
score: float = 0.0,
confidence: float = 0.0,
tokens_confidence: List[float] = None,
times: List[int] = None,
nbest: List[List[int]] = None,
nbest_scores: List[float] = None,
nbest_times: List[List[int]] = None):
"""
Args:
tokens: decode token list
score: the total decode score of this result
confidence: the total confidence of this result, it's in 0~1
tokens_confidence: confidence of each token
times: timestamp of each token, list of (start, end)
nbest: nbest result
nbest_scores: score of each nbest
nbest_times:
"""
self.tokens = tokens
self.score = score
self.confidence = confidence
self.tokens_confidence = tokens_confidence
self.times = times
self.nbest = nbest
self.nbest_scores = nbest_scores
self.nbest_times = nbest_times
class PrefixScore:
""" For CTC prefix beam search """
def __init__(self,
s: float = float('-inf'),
ns: float = float('-inf'),
v_s: float = float('-inf'),
v_ns: float = float('-inf'),
context_state: ContextState = None,
context_score: float = 0.0):
self.s = s # blank_ending_score
self.ns = ns # none_blank_ending_score
self.v_s = v_s # viterbi blank ending score
self.v_ns = v_ns # viterbi none blank ending score
self.cur_token_prob = float('-inf') # prob of current token
self.times_s = [] # times of viterbi blank path
self.times_ns = [] # times of viterbi none blank path
self.context_state = context_state
self.context_score = context_score
self.has_context = False
def score(self):
return log_add(self.s, self.ns)
def viterbi_score(self):
return self.v_s if self.v_s > self.v_ns else self.v_ns
def times(self):
return self.times_s if self.v_s > self.v_ns else self.times_ns
def total_score(self):
return self.score() + self.context_score
def copy_context(self, prefix_score):
self.context_score = prefix_score.context_score
self.context_state = prefix_score.context_state
def update_context(self, context_graph, prefix_score, word_id):
self.copy_context(prefix_score)
(score, context_state) = context_graph.forward_one_step(
prefix_score.context_state, word_id)
self.context_score += score
self.context_state = context_state
def ctc_greedy_search(ctc_probs: torch.Tensor,
ctc_lens: torch.Tensor,
blank_id: int = 0) -> List[DecodeResult]:
batch_size = ctc_probs.shape[0]
maxlen = ctc_probs.size(1)
topk_prob, topk_index = ctc_probs.topk(1, dim=2) # (B, maxlen, 1)
topk_index = topk_index.view(batch_size, maxlen) # (B, maxlen)
mask = make_pad_mask(ctc_lens, maxlen) # (B, maxlen)
topk_index = topk_index.masked_fill_(mask, blank_id) # (B, maxlen)
hyps = [hyp.tolist() for hyp in topk_index]
scores = topk_prob.max(1)
results = []
for hyp in hyps:
r = DecodeResult(remove_duplicates_and_blank(hyp, blank_id))
results.append(r)
return results
def ctc_prefix_beam_search(
ctc_probs: torch.Tensor,
ctc_lens: torch.Tensor,
beam_size: int,
context_graph: ContextGraph = None,
blank_id: int = 0,
) -> List[DecodeResult]:
"""
Returns:
List[List[List[int]]]: nbest result for each utterance
"""
batch_size = ctc_probs.shape[0]
results = []
# CTC prefix beam search can not be paralleled, so search one by one
for i in range(batch_size):
ctc_prob = ctc_probs[i]
num_t = ctc_lens[i]
cur_hyps = [(tuple(),
PrefixScore(s=0.0,
ns=-float('inf'),
v_s=0.0,
v_ns=0.0,
context_state=None if context_graph is None
else context_graph.root,
context_score=0.0))]
# 2. CTC beam search step by step
for t in range(0, num_t):
logp = ctc_prob[t] # (vocab_size,)
# key: prefix, value: PrefixScore
next_hyps = defaultdict(lambda: PrefixScore())
# 2.1 First beam prune: select topk best
top_k_logp, top_k_index = logp.topk(beam_size) # (beam_size,)
for u in top_k_index:
u = u.item()
prob = logp[u].item()
for prefix, prefix_score in cur_hyps:
last = prefix[-1] if len(prefix) > 0 else None
if u == blank_id: # blank
next_score = next_hyps[prefix]
next_score.s = log_add(next_score.s,
prefix_score.score() + prob)
next_score.v_s = prefix_score.viterbi_score() + prob
next_score.times_s = prefix_score.times().copy()
# perfix not changed, copy the context from prefix
if context_graph and not next_score.has_context:
next_score.copy_context(prefix_score)
next_score.has_context = True
elif u == last:
# Update *uu -> *u;
next_score1 = next_hyps[prefix]
next_score1.ns = log_add(next_score1.ns,
prefix_score.ns + prob)
if next_score1.v_ns < prefix_score.v_ns + prob:
next_score1.v_ns = prefix_score.v_ns + prob
if next_score1.cur_token_prob < prob:
next_score1.cur_token_prob = prob
next_score1.times_ns = prefix_score.times_ns.copy(
)
next_score1.times_ns[-1] = t
if context_graph and not next_score1.has_context:
next_score1.copy_context(prefix_score)
next_score1.has_context = True
# Update *u-u -> *uu, - is for blank
n_prefix = prefix + (u, )
next_score2 = next_hyps[n_prefix]
next_score2.ns = log_add(next_score2.ns,
prefix_score.s + prob)
if next_score2.v_ns < prefix_score.v_s + prob:
next_score2.v_ns = prefix_score.v_s + prob
next_score2.cur_token_prob = prob
next_score2.times_ns = prefix_score.times_s.copy()
next_score2.times_ns.append(t)
if context_graph and not next_score2.has_context:
next_score2.update_context(context_graph,
prefix_score, u)
next_score2.has_context = True
else:
n_prefix = prefix + (u, )
next_score = next_hyps[n_prefix]
next_score.ns = log_add(next_score.ns,
prefix_score.score() + prob)
if next_score.v_ns < prefix_score.viterbi_score(
) + prob:
next_score.v_ns = prefix_score.viterbi_score(
) + prob
next_score.cur_token_prob = prob
next_score.times_ns = prefix_score.times().copy()
next_score.times_ns.append(t)
if context_graph and not next_score.has_context:
next_score.update_context(context_graph,
prefix_score, u)
next_score.has_context = True
# 2.2 Second beam prune
next_hyps = sorted(next_hyps.items(),
key=lambda x: x[1].total_score(),
reverse=True)
cur_hyps = next_hyps[:beam_size]
# We should backoff the context score/state when the context is
# not fully matched at the last time.
if context_graph is not None:
for i, hyp in enumerate(cur_hyps):
context_score, new_context_state = context_graph.finalize(
hyp[1].context_state)
cur_hyps[i][1].context_score = context_score
cur_hyps[i][1].context_state = new_context_state
nbest = [y[0] for y in cur_hyps]
nbest_scores = [y[1].total_score() for y in cur_hyps]
nbest_times = [y[1].times() for y in cur_hyps]
best = nbest[0]
best_score = nbest_scores[0]
best_time = nbest_times[0]
results.append(
DecodeResult(tokens=best,
score=best_score,
times=best_time,
nbest=nbest,
nbest_scores=nbest_scores,
nbest_times=nbest_times))
return results
def attention_beam_search(
model,
encoder_out: torch.Tensor,
encoder_mask: torch.Tensor,
beam_size: int = 10,
length_penalty: float = 0.0,
infos: Dict[str, List[str]] = None,
) -> List[DecodeResult]:
device = encoder_out.device
batch_size = encoder_out.shape[0]
# Let's assume B = batch_size and N = beam_size
# 1. Encoder
maxlen = encoder_out.size(1)
encoder_dim = encoder_out.size(2)
running_size = batch_size * beam_size
if getattr(model, 'special_tokens', None) is not None \
and "transcribe" in model.special_tokens:
tasks, langs = infos["tasks"], infos["langs"]
tasks = [t for t in tasks for _ in range(beam_size)]
langs = [l for l in langs for _ in range(beam_size)]
hyps = torch.ones([running_size, 0], dtype=torch.long,
device=device) # (B*N, 0)
hyps, _ = add_whisper_tokens(model.special_tokens,
hyps,
model.ignore_id,
tasks=tasks,
no_timestamp=True,
langs=langs,
use_prev=False)
else:
hyps = torch.ones([running_size, 1], dtype=torch.long,
device=device).fill_(model.sos) # (B*N, 1)
prefix_len = hyps.size(1)
scores = torch.tensor([0.0] + [-float('inf')] * (beam_size - 1),
dtype=torch.float)
scores = scores.to(device).repeat([batch_size
]).unsqueeze(1).to(device) # (B*N, 1)
end_flag = torch.zeros_like(scores, dtype=torch.bool, device=device)
cache = {
'self_att_cache': {},
'cross_att_cache': {},
}
if model.decoder.use_sdpa:
encoder_mask = mask_to_bias(encoder_mask, encoder_out.dtype)
if hasattr(model, 'decode_maxlen'):
maxlen = model.decode_maxlen
# 2. Decoder forward step by step
for i in range(prefix_len, maxlen + 1):
# Stop if all batch and all beam produce eos
if end_flag.sum() == running_size:
break
# 2.1 Forward decoder step
hyps_mask = subsequent_mask(i).unsqueeze(0).repeat(
running_size, 1, 1).to(device) # (B*N, i, i)
if model.decoder.use_sdpa:
hyps_mask = mask_to_bias(hyps_mask, encoder_out.dtype)
# logp: (B*N, vocab)
logp = model.decoder.forward_one_step(encoder_out, encoder_mask, hyps,
hyps_mask, cache)
# 2.2 First beam prune: select topk best prob at current time
top_k_logp, top_k_index = logp.topk(beam_size) # (B*N, N)
top_k_logp = mask_finished_scores(top_k_logp, end_flag)
top_k_index = mask_finished_preds(top_k_index, end_flag, model.eos)
# 2.3 Second beam prune: select topk score with history
scores = scores + top_k_logp # (B*N, N), broadcast add
scores = scores.view(batch_size, beam_size * beam_size) # (B, N*N)
scores, offset_k_index = scores.topk(k=beam_size) # (B, N)
# Update cache to be consistent with new topk scores / hyps
cache_index = (offset_k_index // beam_size).view(-1) # (B*N)
base_cache_index = (torch.arange(batch_size, device=device).view(
-1, 1).repeat([1, beam_size]) * beam_size).view(-1) # (B*N)
cache_index = base_cache_index + cache_index
cache['self_att_cache'] = {
i_layer: (torch.index_select(value[0], dim=0, index=cache_index),
torch.index_select(value[1], dim=0, index=cache_index))
for (i_layer, value) in cache['self_att_cache'].items()
}
# NOTE(Mddct): we don't need select cross att here
torch.cuda.empty_cache()
scores = scores.view(-1, 1) # (B*N, 1)
# 2.4. Compute base index in top_k_index,
# regard top_k_index as (B*N*N),regard offset_k_index as (B*N),
# then find offset_k_index in top_k_index
base_k_index = torch.arange(batch_size, device=device).view(
-1, 1).repeat([1, beam_size]) # (B, N)
base_k_index = base_k_index * beam_size * beam_size
best_k_index = base_k_index.view(-1) + offset_k_index.view(-1) # (B*N)
# 2.5 Update best hyps
best_k_pred = torch.index_select(top_k_index.view(-1),
dim=-1,
index=best_k_index) # (B*N)
best_hyps_index = best_k_index // beam_size
last_best_k_hyps = torch.index_select(
hyps, dim=0, index=best_hyps_index) # (B*N, i)
hyps = torch.cat((last_best_k_hyps, best_k_pred.view(-1, 1)),
dim=1) # (B*N, i+1)
# 2.6 Update end flag
end_flag = torch.eq(hyps[:, -1], model.eos).view(-1, 1)
# 3. Select best of best
scores = scores.view(batch_size, beam_size)
lengths = hyps.ne(model.eos).sum(dim=1).view(batch_size, beam_size).float()
scores = scores / lengths.pow(length_penalty)
best_scores, best_index = scores.max(dim=-1)
best_hyps_index = best_index + torch.arange(
batch_size, dtype=torch.long, device=device) * beam_size
best_hyps = torch.index_select(hyps, dim=0, index=best_hyps_index)
best_hyps = best_hyps[:, prefix_len:]
results = []
for i in range(batch_size):
hyp = best_hyps[i]
hyp = hyp[hyp != model.eos]
results.append(DecodeResult(hyp.tolist()))
return results
def attention_rescoring(
model,
ctc_prefix_results: List[DecodeResult],
encoder_outs: torch.Tensor,
encoder_lens: torch.Tensor,
ctc_weight: float = 0.0,
reverse_weight: float = 0.0,
infos: Dict[str, List[str]] = None,
) -> List[DecodeResult]:
"""
Args:
ctc_prefix_results(List[DecodeResult]): ctc prefix beam search results
"""
sos, eos = model.sos_symbol(), model.eos_symbol()
device = encoder_outs.device
assert encoder_outs.shape[0] == len(ctc_prefix_results)
batch_size = encoder_outs.shape[0]
results = []
for b in range(batch_size):
encoder_out = encoder_outs[b, :encoder_lens[b], :].unsqueeze(0)
hyps = ctc_prefix_results[b].nbest
ctc_scores = ctc_prefix_results[b].nbest_scores
hyps_pad = pad_sequence([
torch.tensor(hyp, device=device, dtype=torch.long) for hyp in hyps
], True, model.ignore_id) # (beam_size, max_hyps_len)
hyps_lens = torch.tensor([len(hyp) for hyp in hyps],
device=device,
dtype=torch.long) # (beam_size,)
if getattr(model, 'special_tokens', None) is not None \
and "transcribe" in model.special_tokens:
prev_len = hyps_pad.size(1)
hyps_pad, _ = add_whisper_tokens(
model.special_tokens,
hyps_pad,
model.ignore_id,
tasks=[infos["tasks"][b]] * len(hyps),
no_timestamp=True,
langs=[infos["langs"][b]] * len(hyps),
use_prev=False)
cur_len = hyps_pad.size(1)
hyps_lens = hyps_lens + cur_len - prev_len
prefix_len = 4
else:
hyps_pad, _ = add_sos_eos(hyps_pad, sos, eos, model.ignore_id)
hyps_lens = hyps_lens + 1 # Add <sos> at begining
prefix_len = 1
decoder_out, r_decoder_out = model.forward_attention_decoder(
hyps_pad, hyps_lens, encoder_out, reverse_weight)
# Only use decoder score for rescoring
best_score = -float('inf')
best_index = 0
confidences = []
tokens_confidences = []
for i, hyp in enumerate(hyps):
score = 0.0
tc = [] # tokens confidences
for j, w in enumerate(hyp):
s = decoder_out[i][j + (prefix_len - 1)][w]
score += s
tc.append(math.exp(s))
score += decoder_out[i][len(hyp) + (prefix_len - 1)][eos]
# add right to left decoder score
if reverse_weight > 0 and r_decoder_out.dim() > 0:
r_score = 0.0
for j, w in enumerate(hyp):
s = r_decoder_out[i][len(hyp) - j - 1 +
(prefix_len - 1)][w]
r_score += s
tc[j] = (tc[j] + math.exp(s)) / 2
r_score += r_decoder_out[i][len(hyp) + (prefix_len - 1)][eos]
score = score * (1 - reverse_weight) + r_score * reverse_weight
confidences.append(math.exp(score / (len(hyp) + 1)))
# add ctc score
score += ctc_scores[i] * ctc_weight
if score > best_score:
best_score = score.item()
best_index = i
tokens_confidences.append(tc)
results.append(
DecodeResult(hyps[best_index],
best_score,
confidence=confidences[best_index],
times=ctc_prefix_results[b].nbest_times[best_index],
tokens_confidence=tokens_confidences[best_index]))
return results
|