Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2022 Ximalaya Inc. (authors: Yuguang Yang) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Conv2d Module with Valid Padding""" | |
import torch.nn.functional as F | |
from torch.nn.modules.conv import _ConvNd, _size_2_t, Union, _pair, Tensor, Optional | |
class Conv2dValid(_ConvNd): | |
""" | |
Conv2d operator for VALID mode padding. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: _size_2_t, | |
stride: _size_2_t = 1, | |
padding: Union[str, _size_2_t] = 0, | |
dilation: _size_2_t = 1, | |
groups: int = 1, | |
bias: bool = True, | |
padding_mode: str = 'zeros', # TODO: refine this type | |
device=None, | |
dtype=None, | |
valid_trigx: bool = False, | |
valid_trigy: bool = False) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
kernel_size_ = _pair(kernel_size) | |
stride_ = _pair(stride) | |
padding_ = padding if isinstance(padding, str) else _pair(padding) | |
dilation_ = _pair(dilation) | |
super(Conv2dValid, | |
self).__init__(in_channels, out_channels, | |
kernel_size_, stride_, padding_, dilation_, False, | |
_pair(0), groups, bias, padding_mode, | |
**factory_kwargs) | |
self.valid_trigx = valid_trigx | |
self.valid_trigy = valid_trigy | |
def _conv_forward(self, input: Tensor, weight: Tensor, | |
bias: Optional[Tensor]): | |
validx, validy = 0, 0 | |
if self.valid_trigx: | |
validx = (input.size(-2) * | |
(self.stride[-2] - 1) - 1 + self.kernel_size[-2]) // 2 | |
if self.valid_trigy: | |
validy = (input.size(-1) * | |
(self.stride[-1] - 1) - 1 + self.kernel_size[-1]) // 2 | |
return F.conv2d(input, weight, bias, self.stride, (validx, validy), | |
self.dilation, self.groups) | |
def forward(self, input: Tensor) -> Tensor: | |
return self._conv_forward(input, self.weight, self.bias) | |