# Copyright (c) 2019 Shigeki Karita # 2020 Mobvoi Inc (Binbin Zhang) # 2022 Ximalaya Inc (Yuguang Yang) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Positionwise feed forward layer definition.""" import torch class PositionwiseFeedForward(torch.nn.Module): """Positionwise feed forward layer. FeedForward are appied on each position of the sequence. The output dim is same with the input dim. Args: idim (int): Input dimenstion. hidden_units (int): The number of hidden units. dropout_rate (float): Dropout rate. activation (torch.nn.Module): Activation function """ def __init__(self, idim: int, hidden_units: int, dropout_rate: float, activation: torch.nn.Module = torch.nn.ReLU(), adaptive_scale: bool = False, init_weights: bool = False): """Construct a PositionwiseFeedForward object.""" super(PositionwiseFeedForward, self).__init__() self.idim = idim self.hidden_units = hidden_units self.w_1 = torch.nn.Linear(idim, hidden_units) self.activation = activation self.dropout = torch.nn.Dropout(dropout_rate) self.w_2 = torch.nn.Linear(hidden_units, idim) self.ada_scale = None self.ada_bias = None self.adaptive_scale = adaptive_scale self.ada_scale = torch.nn.Parameter(torch.ones([1, 1, idim]), requires_grad=adaptive_scale) self.ada_bias = torch.nn.Parameter(torch.zeros([1, 1, idim]), requires_grad=adaptive_scale) if init_weights: self.init_weights() def init_weights(self): ffn1_max = self.idim**-0.5 ffn2_max = self.hidden_units**-0.5 torch.nn.init.uniform_(self.w_1.weight.data, -ffn1_max, ffn1_max) torch.nn.init.uniform_(self.w_1.bias.data, -ffn1_max, ffn1_max) torch.nn.init.uniform_(self.w_2.weight.data, -ffn2_max, ffn2_max) torch.nn.init.uniform_(self.w_2.bias.data, -ffn2_max, ffn2_max) def forward(self, xs: torch.Tensor) -> torch.Tensor: """Forward function. Args: xs: input tensor (B, L, D) Returns: output tensor, (B, L, D) """ if self.adaptive_scale: xs = self.ada_scale * xs + self.ada_bias return self.w_2(self.dropout(self.activation(self.w_1(xs))))