ASesYusuf1's picture
Upload folder using huggingface_hub
3978e51
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import os
import random
import numpy as np
import torch
import soundfile as sf
import pickle
import time
import itertools
import multiprocessing
from tqdm.auto import tqdm
from glob import glob
import audiomentations as AU
import pedalboard as PB
import warnings
warnings.filterwarnings("ignore")
def load_chunk(path, length, chunk_size, offset=None):
if chunk_size <= length:
if offset is None:
offset = np.random.randint(length - chunk_size + 1)
x = sf.read(path, dtype='float32', start=offset, frames=chunk_size)[0]
else:
x = sf.read(path, dtype='float32')[0]
if len(x.shape) == 1:
# Mono case
pad = np.zeros((chunk_size - length))
else:
pad = np.zeros([chunk_size - length, x.shape[-1]])
x = np.concatenate([x, pad], axis=0)
# Mono fix
if len(x.shape) == 1:
x = np.expand_dims(x, axis=1)
return x.T
def get_track_set_length(params):
path, instruments, file_types = params
# Check lengths of all instruments (it can be different in some cases)
lengths_arr = []
for instr in instruments:
length = -1
for extension in file_types:
path_to_audio_file = path + '/{}.{}'.format(instr, extension)
if os.path.isfile(path_to_audio_file):
length = len(sf.read(path_to_audio_file)[0])
break
if length == -1:
print('Cant find file "{}" in folder {}'.format(instr, path))
continue
lengths_arr.append(length)
lengths_arr = np.array(lengths_arr)
if lengths_arr.min() != lengths_arr.max():
print('Warning: lengths of stems are different for path: {}. ({} != {})'.format(
path,
lengths_arr.min(),
lengths_arr.max())
)
# We use minimum to allow overflow for soundfile read in non-equal length cases
return path, lengths_arr.min()
# For multiprocessing
def get_track_length(params):
path = params
length = len(sf.read(path)[0])
return (path, length)
class MSSDataset(torch.utils.data.Dataset):
def __init__(self, config, data_path, metadata_path="metadata.pkl", dataset_type=1, batch_size=None, verbose=True):
self.verbose = verbose
self.config = config
self.dataset_type = dataset_type # 1, 2, 3 or 4
self.data_path = data_path
self.instruments = instruments = config.training.instruments
if batch_size is None:
batch_size = config.training.batch_size
self.batch_size = batch_size
self.file_types = ['wav', 'flac']
self.metadata_path = metadata_path
# Augmentation block
self.aug = False
if 'augmentations' in config:
if config['augmentations'].enable is True:
if self.verbose:
print('Use augmentation for training')
self.aug = True
else:
if self.verbose:
print('There is no augmentations block in config. Augmentations disabled for training...')
metadata = self.get_metadata()
if self.dataset_type in [1, 4]:
if len(metadata) > 0:
if self.verbose:
print('Found tracks in dataset: {}'.format(len(metadata)))
else:
print('No tracks found for training. Check paths you provided!')
exit()
else:
for instr in self.instruments:
if self.verbose:
print('Found tracks for {} in dataset: {}'.format(instr, len(metadata[instr])))
self.metadata = metadata
self.chunk_size = config.audio.chunk_size
self.min_mean_abs = config.audio.min_mean_abs
def __len__(self):
return self.config.training.num_steps * self.batch_size
def read_from_metadata_cache(self, track_paths, instr=None):
metadata = []
if os.path.isfile(self.metadata_path):
if self.verbose:
print('Found metadata cache file: {}'.format(self.metadata_path))
old_metadata = pickle.load(open(self.metadata_path, 'rb'))
else:
return track_paths, metadata
if instr:
old_metadata = old_metadata[instr]
# We will not re-read tracks existed in old metadata file
track_paths_set = set(track_paths)
for old_path, file_size in old_metadata:
if old_path in track_paths_set:
metadata.append([old_path, file_size])
track_paths_set.remove(old_path)
track_paths = list(track_paths_set)
if len(metadata) > 0:
print('Old metadata was used for {} tracks.'.format(len(metadata)))
return track_paths, metadata
def get_metadata(self):
read_metadata_procs = multiprocessing.cpu_count()
if 'read_metadata_procs' in self.config['training']:
read_metadata_procs = int(self.config['training']['read_metadata_procs'])
if self.verbose:
print(
'Dataset type:', self.dataset_type,
'Processes to use:', read_metadata_procs,
'\nCollecting metadata for', str(self.data_path),
)
if self.dataset_type in [1, 4]:
track_paths = []
if type(self.data_path) == list:
for tp in self.data_path:
tracks_for_folder = sorted(glob(tp + '/*'))
if len(tracks_for_folder) == 0:
print('Warning: no tracks found in folder \'{}\'. Please check it!'.format(tp))
track_paths += tracks_for_folder
else:
track_paths += sorted(glob(self.data_path + '/*'))
track_paths = [path for path in track_paths if os.path.basename(path)[0] != '.' and os.path.isdir(path)]
track_paths, metadata = self.read_from_metadata_cache(track_paths, None)
if read_metadata_procs <= 1:
for path in tqdm(track_paths):
track_path, track_length = get_track_set_length((path, self.instruments, self.file_types))
metadata.append((track_path, track_length))
else:
p = multiprocessing.Pool(processes=read_metadata_procs)
with tqdm(total=len(track_paths)) as pbar:
track_iter = p.imap(
get_track_set_length,
zip(track_paths, itertools.repeat(self.instruments), itertools.repeat(self.file_types))
)
for track_path, track_length in track_iter:
metadata.append((track_path, track_length))
pbar.update()
p.close()
elif self.dataset_type == 2:
metadata = dict()
for instr in self.instruments:
metadata[instr] = []
track_paths = []
if type(self.data_path) == list:
for tp in self.data_path:
track_paths += sorted(glob(tp + '/{}/*.wav'.format(instr)))
track_paths += sorted(glob(tp + '/{}/*.flac'.format(instr)))
else:
track_paths += sorted(glob(self.data_path + '/{}/*.wav'.format(instr)))
track_paths += sorted(glob(self.data_path + '/{}/*.flac'.format(instr)))
track_paths, metadata[instr] = self.read_from_metadata_cache(track_paths, instr)
if read_metadata_procs <= 1:
for path in tqdm(track_paths):
length = len(sf.read(path)[0])
metadata[instr].append((path, length))
else:
p = multiprocessing.Pool(processes=read_metadata_procs)
for out in tqdm(p.imap(get_track_length, track_paths), total=len(track_paths)):
metadata[instr].append(out)
elif self.dataset_type == 3:
import pandas as pd
if type(self.data_path) != list:
data_path = [self.data_path]
metadata = dict()
for i in range(len(self.data_path)):
if self.verbose:
print('Reading tracks from: {}'.format(self.data_path[i]))
df = pd.read_csv(self.data_path[i])
skipped = 0
for instr in self.instruments:
part = df[df['instrum'] == instr].copy()
print('Tracks found for {}: {}'.format(instr, len(part)))
for instr in self.instruments:
part = df[df['instrum'] == instr].copy()
metadata[instr] = []
track_paths = list(part['path'].values)
track_paths, metadata[instr] = self.read_from_metadata_cache(track_paths, instr)
for path in tqdm(track_paths):
if not os.path.isfile(path):
print('Cant find track: {}'.format(path))
skipped += 1
continue
# print(path)
try:
length = len(sf.read(path)[0])
except:
print('Problem with path: {}'.format(path))
skipped += 1
continue
metadata[instr].append((path, length))
if skipped > 0:
print('Missing tracks: {} from {}'.format(skipped, len(df)))
else:
print('Unknown dataset type: {}. Must be 1, 2, 3 or 4'.format(self.dataset_type))
exit()
# Save metadata
pickle.dump(metadata, open(self.metadata_path, 'wb'))
return metadata
def load_source(self, metadata, instr):
while True:
if self.dataset_type in [1, 4]:
track_path, track_length = random.choice(metadata)
for extension in self.file_types:
path_to_audio_file = track_path + '/{}.{}'.format(instr, extension)
if os.path.isfile(path_to_audio_file):
try:
source = load_chunk(path_to_audio_file, track_length, self.chunk_size)
except Exception as e:
# Sometimes error during FLAC reading, catch it and use zero stem
print('Error: {} Path: {}'.format(e, path_to_audio_file))
source = np.zeros((2, self.chunk_size), dtype=np.float32)
break
else:
track_path, track_length = random.choice(metadata[instr])
try:
source = load_chunk(track_path, track_length, self.chunk_size)
except Exception as e:
# Sometimes error during FLAC reading, catch it and use zero stem
print('Error: {} Path: {}'.format(e, track_path))
source = np.zeros((2, self.chunk_size), dtype=np.float32)
if np.abs(source).mean() >= self.min_mean_abs: # remove quiet chunks
break
if self.aug:
source = self.augm_data(source, instr)
return torch.tensor(source, dtype=torch.float32)
def load_random_mix(self):
res = []
for instr in self.instruments:
s1 = self.load_source(self.metadata, instr)
# Mixup augmentation. Multiple mix of same type of stems
if self.aug:
if 'mixup' in self.config['augmentations']:
if self.config['augmentations'].mixup:
mixup = [s1]
for prob in self.config.augmentations.mixup_probs:
if random.uniform(0, 1) < prob:
s2 = self.load_source(self.metadata, instr)
mixup.append(s2)
mixup = torch.stack(mixup, dim=0)
loud_values = np.random.uniform(
low=self.config.augmentations.loudness_min,
high=self.config.augmentations.loudness_max,
size=(len(mixup),)
)
loud_values = torch.tensor(loud_values, dtype=torch.float32)
mixup *= loud_values[:, None, None]
s1 = mixup.mean(dim=0, dtype=torch.float32)
res.append(s1)
res = torch.stack(res)
return res
def load_aligned_data(self):
track_path, track_length = random.choice(self.metadata)
attempts = 10
while attempts:
if track_length >= self.chunk_size:
common_offset = np.random.randint(track_length - self.chunk_size + 1)
else:
common_offset = None
res = []
silent_chunks = 0
for i in self.instruments:
for extension in self.file_types:
path_to_audio_file = track_path + '/{}.{}'.format(i, extension)
if os.path.isfile(path_to_audio_file):
try:
source = load_chunk(path_to_audio_file, track_length, self.chunk_size, offset=common_offset)
except Exception as e:
# Sometimes error during FLAC reading, catch it and use zero stem
print('Error: {} Path: {}'.format(e, path_to_audio_file))
source = np.zeros((2, self.chunk_size), dtype=np.float32)
break
res.append(source)
if np.abs(source).mean() < self.min_mean_abs: # remove quiet chunks
silent_chunks += 1
if silent_chunks == 0:
break
attempts -= 1
if attempts <= 0:
print('Attempts max!', track_path)
if common_offset is None:
# If track is too small break immediately
break
res = np.stack(res, axis=0)
if self.aug:
for i, instr in enumerate(self.instruments):
res[i] = self.augm_data(res[i], instr)
return torch.tensor(res, dtype=torch.float32)
def augm_data(self, source, instr):
# source.shape = (2, 261120) - first channels, second length
source_shape = source.shape
applied_augs = []
if 'all' in self.config['augmentations']:
augs = self.config['augmentations']['all']
else:
augs = dict()
# We need to add to all augmentations specific augs for stem. And rewrite values if needed
if instr in self.config['augmentations']:
for el in self.config['augmentations'][instr]:
augs[el] = self.config['augmentations'][instr][el]
# Channel shuffle
if 'channel_shuffle' in augs:
if augs['channel_shuffle'] > 0:
if random.uniform(0, 1) < augs['channel_shuffle']:
source = source[::-1].copy()
applied_augs.append('channel_shuffle')
# Random inverse
if 'random_inverse' in augs:
if augs['random_inverse'] > 0:
if random.uniform(0, 1) < augs['random_inverse']:
source = source[:, ::-1].copy()
applied_augs.append('random_inverse')
# Random polarity (multiply -1)
if 'random_polarity' in augs:
if augs['random_polarity'] > 0:
if random.uniform(0, 1) < augs['random_polarity']:
source = -source.copy()
applied_augs.append('random_polarity')
# Random pitch shift
if 'pitch_shift' in augs:
if augs['pitch_shift'] > 0:
if random.uniform(0, 1) < augs['pitch_shift']:
apply_aug = AU.PitchShift(
min_semitones=augs['pitch_shift_min_semitones'],
max_semitones=augs['pitch_shift_max_semitones'],
p=1.0
)
source = apply_aug(samples=source, sample_rate=44100)
applied_augs.append('pitch_shift')
# Random seven band parametric eq
if 'seven_band_parametric_eq' in augs:
if augs['seven_band_parametric_eq'] > 0:
if random.uniform(0, 1) < augs['seven_band_parametric_eq']:
apply_aug = AU.SevenBandParametricEQ(
min_gain_db=augs['seven_band_parametric_eq_min_gain_db'],
max_gain_db=augs['seven_band_parametric_eq_max_gain_db'],
p=1.0
)
source = apply_aug(samples=source, sample_rate=44100)
applied_augs.append('seven_band_parametric_eq')
# Random tanh distortion
if 'tanh_distortion' in augs:
if augs['tanh_distortion'] > 0:
if random.uniform(0, 1) < augs['tanh_distortion']:
apply_aug = AU.TanhDistortion(
min_distortion=augs['tanh_distortion_min'],
max_distortion=augs['tanh_distortion_max'],
p=1.0
)
source = apply_aug(samples=source, sample_rate=44100)
applied_augs.append('tanh_distortion')
# Random MP3 Compression
if 'mp3_compression' in augs:
if augs['mp3_compression'] > 0:
if random.uniform(0, 1) < augs['mp3_compression']:
apply_aug = AU.Mp3Compression(
min_bitrate=augs['mp3_compression_min_bitrate'],
max_bitrate=augs['mp3_compression_max_bitrate'],
backend=augs['mp3_compression_backend'],
p=1.0
)
source = apply_aug(samples=source, sample_rate=44100)
applied_augs.append('mp3_compression')
# Random AddGaussianNoise
if 'gaussian_noise' in augs:
if augs['gaussian_noise'] > 0:
if random.uniform(0, 1) < augs['gaussian_noise']:
apply_aug = AU.AddGaussianNoise(
min_amplitude=augs['gaussian_noise_min_amplitude'],
max_amplitude=augs['gaussian_noise_max_amplitude'],
p=1.0
)
source = apply_aug(samples=source, sample_rate=44100)
applied_augs.append('gaussian_noise')
# Random TimeStretch
if 'time_stretch' in augs:
if augs['time_stretch'] > 0:
if random.uniform(0, 1) < augs['time_stretch']:
apply_aug = AU.TimeStretch(
min_rate=augs['time_stretch_min_rate'],
max_rate=augs['time_stretch_max_rate'],
leave_length_unchanged=True,
p=1.0
)
source = apply_aug(samples=source, sample_rate=44100)
applied_augs.append('time_stretch')
# Possible fix of shape
if source_shape != source.shape:
source = source[..., :source_shape[-1]]
# Random Reverb
if 'pedalboard_reverb' in augs:
if augs['pedalboard_reverb'] > 0:
if random.uniform(0, 1) < augs['pedalboard_reverb']:
room_size = random.uniform(
augs['pedalboard_reverb_room_size_min'],
augs['pedalboard_reverb_room_size_max'],
)
damping = random.uniform(
augs['pedalboard_reverb_damping_min'],
augs['pedalboard_reverb_damping_max'],
)
wet_level = random.uniform(
augs['pedalboard_reverb_wet_level_min'],
augs['pedalboard_reverb_wet_level_max'],
)
dry_level = random.uniform(
augs['pedalboard_reverb_dry_level_min'],
augs['pedalboard_reverb_dry_level_max'],
)
width = random.uniform(
augs['pedalboard_reverb_width_min'],
augs['pedalboard_reverb_width_max'],
)
board = PB.Pedalboard([PB.Reverb(
room_size=room_size, # 0.1 - 0.9
damping=damping, # 0.1 - 0.9
wet_level=wet_level, # 0.1 - 0.9
dry_level=dry_level, # 0.1 - 0.9
width=width, # 0.9 - 1.0
freeze_mode=0.0,
)])
source = board(source, 44100)
applied_augs.append('pedalboard_reverb')
# Random Chorus
if 'pedalboard_chorus' in augs:
if augs['pedalboard_chorus'] > 0:
if random.uniform(0, 1) < augs['pedalboard_chorus']:
rate_hz = random.uniform(
augs['pedalboard_chorus_rate_hz_min'],
augs['pedalboard_chorus_rate_hz_max'],
)
depth = random.uniform(
augs['pedalboard_chorus_depth_min'],
augs['pedalboard_chorus_depth_max'],
)
centre_delay_ms = random.uniform(
augs['pedalboard_chorus_centre_delay_ms_min'],
augs['pedalboard_chorus_centre_delay_ms_max'],
)
feedback = random.uniform(
augs['pedalboard_chorus_feedback_min'],
augs['pedalboard_chorus_feedback_max'],
)
mix = random.uniform(
augs['pedalboard_chorus_mix_min'],
augs['pedalboard_chorus_mix_max'],
)
board = PB.Pedalboard([PB.Chorus(
rate_hz=rate_hz,
depth=depth,
centre_delay_ms=centre_delay_ms,
feedback=feedback,
mix=mix,
)])
source = board(source, 44100)
applied_augs.append('pedalboard_chorus')
# Random Phazer
if 'pedalboard_phazer' in augs:
if augs['pedalboard_phazer'] > 0:
if random.uniform(0, 1) < augs['pedalboard_phazer']:
rate_hz = random.uniform(
augs['pedalboard_phazer_rate_hz_min'],
augs['pedalboard_phazer_rate_hz_max'],
)
depth = random.uniform(
augs['pedalboard_phazer_depth_min'],
augs['pedalboard_phazer_depth_max'],
)
centre_frequency_hz = random.uniform(
augs['pedalboard_phazer_centre_frequency_hz_min'],
augs['pedalboard_phazer_centre_frequency_hz_max'],
)
feedback = random.uniform(
augs['pedalboard_phazer_feedback_min'],
augs['pedalboard_phazer_feedback_max'],
)
mix = random.uniform(
augs['pedalboard_phazer_mix_min'],
augs['pedalboard_phazer_mix_max'],
)
board = PB.Pedalboard([PB.Phaser(
rate_hz=rate_hz,
depth=depth,
centre_frequency_hz=centre_frequency_hz,
feedback=feedback,
mix=mix,
)])
source = board(source, 44100)
applied_augs.append('pedalboard_phazer')
# Random Distortion
if 'pedalboard_distortion' in augs:
if augs['pedalboard_distortion'] > 0:
if random.uniform(0, 1) < augs['pedalboard_distortion']:
drive_db = random.uniform(
augs['pedalboard_distortion_drive_db_min'],
augs['pedalboard_distortion_drive_db_max'],
)
board = PB.Pedalboard([PB.Distortion(
drive_db=drive_db,
)])
source = board(source, 44100)
applied_augs.append('pedalboard_distortion')
# Random PitchShift
if 'pedalboard_pitch_shift' in augs:
if augs['pedalboard_pitch_shift'] > 0:
if random.uniform(0, 1) < augs['pedalboard_pitch_shift']:
semitones = random.uniform(
augs['pedalboard_pitch_shift_semitones_min'],
augs['pedalboard_pitch_shift_semitones_max'],
)
board = PB.Pedalboard([PB.PitchShift(
semitones=semitones
)])
source = board(source, 44100)
applied_augs.append('pedalboard_pitch_shift')
# Random Resample
if 'pedalboard_resample' in augs:
if augs['pedalboard_resample'] > 0:
if random.uniform(0, 1) < augs['pedalboard_resample']:
target_sample_rate = random.uniform(
augs['pedalboard_resample_target_sample_rate_min'],
augs['pedalboard_resample_target_sample_rate_max'],
)
board = PB.Pedalboard([PB.Resample(
target_sample_rate=target_sample_rate
)])
source = board(source, 44100)
applied_augs.append('pedalboard_resample')
# Random Bitcrash
if 'pedalboard_bitcrash' in augs:
if augs['pedalboard_bitcrash'] > 0:
if random.uniform(0, 1) < augs['pedalboard_bitcrash']:
bit_depth = random.uniform(
augs['pedalboard_bitcrash_bit_depth_min'],
augs['pedalboard_bitcrash_bit_depth_max'],
)
board = PB.Pedalboard([PB.Bitcrush(
bit_depth=bit_depth
)])
source = board(source, 44100)
applied_augs.append('pedalboard_bitcrash')
# Random MP3Compressor
if 'pedalboard_mp3_compressor' in augs:
if augs['pedalboard_mp3_compressor'] > 0:
if random.uniform(0, 1) < augs['pedalboard_mp3_compressor']:
vbr_quality = random.uniform(
augs['pedalboard_mp3_compressor_pedalboard_mp3_compressor_min'],
augs['pedalboard_mp3_compressor_pedalboard_mp3_compressor_max'],
)
board = PB.Pedalboard([PB.MP3Compressor(
vbr_quality=vbr_quality
)])
source = board(source, 44100)
applied_augs.append('pedalboard_mp3_compressor')
# print(applied_augs)
return source
def __getitem__(self, index):
if self.dataset_type in [1, 2, 3]:
res = self.load_random_mix()
else:
res = self.load_aligned_data()
# Randomly change loudness of each stem
if self.aug:
if 'loudness' in self.config['augmentations']:
if self.config['augmentations']['loudness']:
loud_values = np.random.uniform(
low=self.config['augmentations']['loudness_min'],
high=self.config['augmentations']['loudness_max'],
size=(len(res),)
)
loud_values = torch.tensor(loud_values, dtype=torch.float32)
res *= loud_values[:, None, None]
mix = res.sum(0)
if self.aug:
if 'mp3_compression_on_mixture' in self.config['augmentations']:
apply_aug = AU.Mp3Compression(
min_bitrate=self.config['augmentations']['mp3_compression_on_mixture_bitrate_min'],
max_bitrate=self.config['augmentations']['mp3_compression_on_mixture_bitrate_max'],
backend=self.config['augmentations']['mp3_compression_on_mixture_backend'],
p=self.config['augmentations']['mp3_compression_on_mixture']
)
mix_conv = mix.cpu().numpy().astype(np.float32)
required_shape = mix_conv.shape
mix = apply_aug(samples=mix_conv, sample_rate=44100)
# Sometimes it gives longer audio (so we cut)
if mix.shape != required_shape:
mix = mix[..., :required_shape[-1]]
mix = torch.tensor(mix, dtype=torch.float32)
# If we need to optimize only given stem
if self.config.training.target_instrument is not None:
index = self.config.training.instruments.index(self.config.training.target_instrument)
return res[index:index+1], mix
return res, mix