Jhfhnrqgx-Gxeelqj-Vwxglr / inference.py
ASesYusuf1's picture
Update inference.py
865a9b2 verified
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import argparse
import time
import librosa
from tqdm.auto import tqdm
import sys
import os
import glob
import torch
import soundfile as sf
import torch.nn as nn
from datetime import datetime
import numpy as np
import librosa
# Using the embedded version of Python can also correctly import the utils module.
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
from utils import demix, get_model_from_config, normalize_audio, denormalize_audio
from utils import prefer_target_instrument, apply_tta, load_start_checkpoint, load_lora_weights
import warnings
warnings.filterwarnings("ignore")
def shorten_filename(filename, max_length=30):
"""
Shortens a filename to a specified maximum length
Args:
filename (str): The filename to be shortened
max_length (int): Maximum allowed length for the filename
Returns:
str: Shortened filename
"""
base, ext = os.path.splitext(filename)
if len(base) <= max_length:
return filename
# Take first 15 and last 10 characters
shortened = base[:15] + "..." + base[-10:] + ext
return shortened
def get_soundfile_subtype(pcm_type, is_float=False):
"""
PCM türüne göre uygun soundfile subtypei belirle
Args:
pcm_type (str): PCM türü ('PCM_16', 'PCM_24', 'FLOAT')
is_float (bool): Float formatı kullanılıp kullanılmayacağı
Returns:
str: Soundfile subtype
"""
if is_float:
return 'FLOAT'
subtype_map = {
'PCM_16': 'PCM_16',
'PCM_24': 'PCM_24',
'FLOAT': 'FLOAT'
}
return subtype_map.get(pcm_type, 'FLOAT')
def run_folder(model, args, config, device, verbose: bool = False):
start_time = time.time()
model.eval()
mixture_paths = sorted(glob.glob(os.path.join(args.input_folder, '*.*')))
sample_rate = getattr(config.audio, 'sample_rate', 44100)
print(f"Total files found: {len(mixture_paths)}. Using sample rate: {sample_rate}")
instruments = prefer_target_instrument(config)[:]
os.makedirs(args.store_dir, exist_ok=True)
# Progress tracking
total_files = len(mixture_paths)
current_file = 0
for path in mixture_paths:
try:
# Dosya işleme başlangıcı
current_file += 1
print(f"Processing file {current_file}/{total_files}")
mix, sr = librosa.load(path, sr=sample_rate, mono=False)
mix_orig = mix.copy()
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
mix, norm_params = normalize_audio(mix)
# Toplam işlem sürelerini izlemek için başlangıç zamanı
total_duration = 0.0
total_steps = 100.0 # Toplam %100
current_progress = 0.0
# Model yükleme ve ilk ayrıştırma (%0 -> %30)
start_time_step = time.time()
waveforms_orig = demix(config, model, mix, device, model_type=args.model_type)
step_duration = time.time() - start_time_step
total_duration += step_duration
current_progress += 30.0 * (step_duration / total_duration) if total_duration > 0 else 30.0
print(f"Progress: {min(current_progress, 30.0):.1f}%")
if args.use_tta:
# TTA işlemi (%30 -> %50)
start_time_step = time.time()
waveforms_orig = apply_tta(config, model, mix, waveforms_orig, device, args.model_type)
step_duration = time.time() - start_time_step
total_duration += step_duration
progress_increment = 20.0 * (step_duration / total_duration) if total_duration > 0 else 20.0
for i in np.arange(0.1, progress_increment + 0.1, 0.1):
current_progress = min(30.0 + i, 50.0)
time.sleep(0.001) # Küçük bir gecikme, gerçek işlem için gereksiz olabilir
print(f"Progress: {current_progress:.1f}%")
if args.demud_phaseremix_inst:
print(f"Demudding track (phase remix - instrumental): {path}")
instr = 'vocals' if 'vocals' in instruments else instruments[0]
instruments.append('instrumental_phaseremix')
if 'instrumental' not in instruments and 'Instrumental' not in instruments:
mix_modified = mix_orig - 2*waveforms_orig[instr]
mix_modified_ = mix_modified.copy()
start_time_step = time.time()
waveforms_modified = demix(config, model, mix_modified, device, model_type=args.model_type)
step_duration = time.time() - start_time_step
total_duration += step_duration
progress_increment = 10.0 * (step_duration / total_duration) if total_duration > 0 else 10.0
for i in np.arange(0.1, progress_increment + 0.1, 0.1):
current_progress = min(50.0 + i, 60.0)
time.sleep(0.001)
print(f"Progress: {current_progress:.1f}%")
if args.use_tta:
start_time_step = time.time()
waveforms_modified = apply_tta(config, model, mix_modified, waveforms_modified, device, args.model_type)
step_duration = time.time() - start_time_step
total_duration += step_duration
progress_increment = 10.0 * (step_duration / total_duration) if total_duration > 0 else 10.0
for i in np.arange(0.1, progress_increment + 0.1, 0.1):
current_progress = min(60.0 + i, 70.0)
time.sleep(0.001)
print(f"Progress: {current_progress:.1f}%")
waveforms_orig['instrumental_phaseremix'] = mix_orig + waveforms_modified[instr]
else:
mix_modified = 2*waveforms_orig[instr] - mix_orig
mix_modified_ = mix_modified.copy()
start_time_step = time.time()
waveforms_modified = demix(config, model, mix_modified, device, model_type=args.model_type)
step_duration = time.time() - start_time_step
total_duration += step_duration
progress_increment = 10.0 * (step_duration / total_duration) if total_duration > 0 else 10.0
for i in np.arange(0.1, progress_increment + 0.1, 0.1):
current_progress = min(50.0 + i, 60.0)
time.sleep(0.001)
print(f"Progress: {current_progress:.1f}%")
if args.use_tta:
start_time_step = time.time()
waveforms_modified = apply_tta(config, model, mix_modified, waveforms_orig, device, args.model_type)
step_duration = time.time() - start_time_step
total_duration += step_duration
progress_increment = 10.0 * (step_duration / total_duration) if total_duration > 0 else 10.0
for i in np.arange(0.1, progress_increment + 0.1, 0.1):
current_progress = min(60.0 + i, 70.0)
time.sleep(0.001)
print(f"Progress: {current_progress:.1f}%")
waveforms_orig['instrumental_phaseremix'] = mix_orig + mix_modified_ - waveforms_modified[instr]
current_progress = 70.0
if args.extract_instrumental:
instr = 'vocals' if 'vocals' in instruments else instruments[0]
waveforms_orig['instrumental'] = mix_orig - waveforms_orig[instr]
if 'instrumental' not in instruments:
instruments.append('instrumental')
# Dosya yazma ve finalize (%70 -> %100)
start_time_step = time.time()
for instr in instruments:
estimates = waveforms_orig[instr]
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
estimates = denormalize_audio(estimates, norm_params)
# Dosya formatı ve PCM türü belirleme
is_float = getattr(args, 'export_format', '').startswith('wav FLOAT')
codec = 'flac' if getattr(args, 'flac_file', False) else 'wav'
# Subtype belirleme
if codec == 'flac':
subtype = get_soundfile_subtype(args.pcm_type, is_float)
else:
subtype = get_soundfile_subtype('FLOAT', is_float)
shortened_filename = shorten_filename(os.path.basename(path))
output_filename = f"{shortened_filename}_{instr}.{codec}"
output_path = os.path.join(args.store_dir, output_filename)
sf.write(output_path, estimates.T, sr, subtype=subtype)
step_duration = time.time() - start_time_step
total_duration += step_duration
progress_increment = 20.0 * (step_duration / total_duration) if total_duration > 0 else 20.0
for i in np.arange(0.1, progress_increment + 0.1, 0.1):
current_progress = min(70.0 + i, 90.0)
time.sleep(0.001)
print(f"Progress: {current_progress:.1f}%")
# Finalize (%90 -> %100)
start_time_step = time.time()
time.sleep(0.1) # Finalize için küçük bir bekleme (gerçek işlem süresiyle değiştirilebilir)
step_duration = time.time() - start_time_step
total_duration += step_duration
progress_increment = 10.0 * (step_duration / total_duration) if total_duration > 0 else 10.0
for i in np.arange(0.1, progress_increment + 0.1, 0.1):
current_progress = min(90.0 + i, 100.0)
time.sleep(0.001)
print(f"Progress: {current_progress:.1f}%")
except Exception as e:
print(f'Cannot read track: {path}')
print(f'Error message: {str(e)}')
continue
print(f"Elapsed time: {time.time() - start_time:.2f} seconds.")
def proc_folder(args):
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default='mdx23c',
help="Model type (bandit, bs_roformer, mdx23c, etc.)")
parser.add_argument("--config_path", type=str, help="Path to config file")
parser.add_argument("--demud_phaseremix_inst", action='store_true', help="demud_phaseremix_inst")
parser.add_argument("--start_check_point", type=str, default='',
help="Initial checkpoint to valid weights")
parser.add_argument("--input_folder", type=str, help="Folder with mixtures to process")
parser.add_argument("--audio_path", type=str, help="Path to a single audio file to process") # Yeni argüman
parser.add_argument("--store_dir", default="", type=str, help="Path to store results")
parser.add_argument("--device_ids", nargs='+', type=int, default=0,
help='List of GPU IDs')
parser.add_argument("--extract_instrumental", action='store_true',
help="Invert vocals to get instrumental if provided")
parser.add_argument("--force_cpu", action='store_true',
help="Force the use of CPU even if CUDA is available")
parser.add_argument("--flac_file", action='store_true',
help="Output flac file instead of wav")
parser.add_argument("--export_format", type=str,
choices=['wav FLOAT', 'flac PCM_16', 'flac PCM_24'],
default='flac PCM_24',
help="Export format and PCM type")
parser.add_argument("--pcm_type", type=str,
choices=['PCM_16', 'PCM_24'],
default='PCM_24',
help="PCM type for FLAC files")
parser.add_argument("--use_tta", action='store_true',
help="Enable test time augmentation")
parser.add_argument("--lora_checkpoint", type=str, default='',
help="Initial checkpoint to LoRA weights")
# Argümanları ayrıştır
parsed_args = parser.parse_args(args)
# Burada parsed_args.audio_path ile ses dosyası yolunu kullanabilirsiniz
print(f"Audio path provided: {parsed_args.audio_path}")
if args is None:
args = parser.parse_args()
else:
args = parser.parse_args(args)
# Cihaz seçimi
device = "cpu"
if args.force_cpu:
device = "cpu"
elif torch.cuda.is_available():
print('CUDA is available, use --force_cpu to disable it.')
device = f'cuda:{args.device_ids[0]}' if type(args.device_ids) == list else f'cuda:{args.device_ids}'
elif torch.backends.mps.is_available():
device = "mps"
print("Using device: ", device)
model_load_start_time = time.time()
torch.backends.cudnn.benchmark = True
model, config = get_model_from_config(args.model_type, args.config_path)
if args.start_check_point != '':
load_start_checkpoint(args, model, type_='inference')
print("Instruments: {}".format(config.training.instruments))
# Çoklu CUDA GPU kullanımı
if type(args.device_ids) == list and len(args.device_ids) > 1 and not args.force_cpu:
model = nn.DataParallel(model, device_ids=args.device_ids)
model = model.to(device)
print("Model load time: {:.2f} sec".format(time.time() - model_load_start_time))
run_folder(model, args, config, device, verbose=True)
if __name__ == "__main__":
proc_folder(None)