AZIIIIIIIIZ commited on
Commit
981db78
1 Parent(s): d02c9bc

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -117
app.py DELETED
@@ -1,117 +0,0 @@
1
-
2
- # import gradio as gr
3
-
4
- # # Use a pipeline as a high-level helper
5
- # from transformers import pipeline
6
-
7
- # # Use a pipeline as a high-level helper
8
- # # Load model directly
9
- # from transformers import AutoImageProcessor, AutoModelForImageClassification
10
-
11
- # # processor = AutoImageProcessor.from_pretrained("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
12
- # # model = AutoModelForImageClassification.from_pretrained("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
13
- # pipe = pipeline("image-classification", model="AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
14
-
15
-
16
- # # $ pip install gradio_client fastapi uvicorn
17
-
18
- # import requests
19
- # from PIL import Image
20
- # from transformers import pipeline
21
- # import io
22
- # import base64
23
-
24
- # Initialize the pipeline
25
- # pipe = pipeline('image-classification')
26
-
27
- # def load_image_from_path(image_path):
28
- # return Image.open(image_path)
29
-
30
- # def load_image_from_url(image_url):
31
- # response = requests.get(image_url)
32
- # return Image.open(io.BytesIO(response.content))
33
-
34
- # def load_image_from_base64(base64_string):
35
- # image_data = base64.b64decode(base64_string)
36
- # return Image.open(io.BytesIO(image_data))
37
-
38
- # def predict(image_input):
39
- # if isinstance(image_input, str):
40
- # if image_input.startswith('http'):
41
- # image = load_image_from_url(image_input)
42
- # elif image_input.startswith('/'):
43
- # image = load_image_from_path(image_input)
44
- # else:
45
- # image = load_image_from_base64(image_input)
46
- # elif isinstance(image_input, Image.Image):
47
- # image = image_input
48
- # else:
49
- # raise ValueError("Incorrect format used for image. Should be an URL linking to an image, a base64 string, a local path, or a PIL image.")
50
-
51
- # return pipe(image)
52
-
53
-
54
- # def predict(image):
55
- # return pipe(image)
56
-
57
- # def main():
58
- # # image_input = 'path_or_url_or_base64' # Update with actual input
59
- # # output = predict(image_input)
60
- # # print(output)
61
-
62
- # demo = gr.Interface(
63
- # fn=predict,
64
- # inputs='image',
65
- # outputs='text',
66
- # )
67
-
68
- # demo.launch()
69
- # import requests
70
- # import torch
71
- # from PIL import Image
72
- # from torchvision import transforms
73
-
74
- # def predict(inp):
75
- # inp = Image.fromarray(inp.astype("uint8"), "RGB")
76
- # inp = transforms.ToTensor()(inp).unsqueeze(0)
77
- # with torch.no_grad():
78
- # prediction = torch.nn.functional.softmax(model(inp.to(device))[0], dim=0)
79
- # return {labels[i]: float(prediction[i]) for i in range(1000)}
80
-
81
-
82
- # inputs = gr.Image()
83
- # outputs = gr.Label(num_top_classes=3)
84
-
85
- # io = gr.Interface(
86
- # fn=predict, inputs=inputs, outputs=outputs, examples=["dog.jpg"]
87
- # )
88
- # io.launch(inline=False, share=True)
89
-
90
-
91
-
92
- # if __name__ == "__main__":
93
- # main()
94
-
95
-
96
-
97
-
98
-
99
-
100
- import gradio as gr
101
- from transformers import pipeline
102
-
103
- pipeline = pipeline("image-classification", model="AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
104
-
105
- def predict(image):
106
- predictions = pipeline(image)
107
- return {p["label"]: p["score"] for p in predictions}
108
-
109
- gr.Interface(
110
- predict,
111
- inputs=gr.inputs.Image(label="Upload Image", type="filepath"),
112
- outputs=gr.outputs.Label(num_top_classes=2),
113
- title="AI Generated? Or Not?",
114
- allow_flagging="manual"
115
- ).launch()
116
-
117
-