Aabbhishekk commited on
Commit
621bc57
1 Parent(s): 4149dcc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -21
app.py CHANGED
@@ -25,16 +25,9 @@ hf = HuggingFaceHubEmbeddings(
25
  huggingfacehub_api_token= HUGGINGFACEHUB_API_TOKEN,
26
  )
27
 
28
- EMB_SBERT_MPNET_BASE = "sentence-transformers/all-mpnet-base-v2"
29
- config = {"persist_directory":None,
30
- "load_in_8bit":False,
31
- "embedding" : EMB_SBERT_MPNET_BASE
32
- }
33
 
34
 
35
- def create_sbert_mpnet():
36
- device = "cuda" if torch.cuda.is_available() else "cpu"
37
- return HuggingFaceEmbeddings(model_name=EMB_SBERT_MPNET_BASE, model_kwargs={"device": device})
38
 
39
  llm = HuggingFaceHub(
40
  repo_id='mistralai/Mistral-7B-Instruct-v0.2',
@@ -43,8 +36,7 @@ llm = HuggingFaceHub(
43
 
44
  )
45
 
46
- if config["embedding"] == EMB_SBERT_MPNET_BASE:
47
- embedding = create_sbert_mpnet()
48
 
49
  from langchain.text_splitter import CharacterTextSplitter, TokenTextSplitter
50
  from langchain.vectorstores import Chroma
@@ -85,17 +77,7 @@ def main():
85
  embeddings = hf
86
  knowledge_base = FAISS.from_texts(texts, embeddings)
87
 
88
- retriever = knowledge_base.as_retriever(search_kwargs={"k":5})
89
- # retriever = FAISS.as_retriever()
90
- # persist_directory = config["persist_directory"]
91
- # vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory)
92
-
93
- # retriever = vectordb.as_retriever(search_kwargs={"k":5})
94
-
95
- # mode = st.selectbox(
96
- # label="Select agent type",
97
- # options=("Agent with AskHuman tool", "Traditional RAG Agent","Search Agent"),
98
- # )
99
 
100
 
101
 
 
25
  huggingfacehub_api_token= HUGGINGFACEHUB_API_TOKEN,
26
  )
27
 
 
 
 
 
 
28
 
29
 
30
+
 
 
31
 
32
  llm = HuggingFaceHub(
33
  repo_id='mistralai/Mistral-7B-Instruct-v0.2',
 
36
 
37
  )
38
 
39
+
 
40
 
41
  from langchain.text_splitter import CharacterTextSplitter, TokenTextSplitter
42
  from langchain.vectorstores import Chroma
 
77
  embeddings = hf
78
  knowledge_base = FAISS.from_texts(texts, embeddings)
79
 
80
+ retriever = knowledge_base.as_retriever(search_kwargs={"k":3})
 
 
 
 
 
 
 
 
 
 
81
 
82
 
83