File size: 12,336 Bytes
0d7efba
 
 
 
 
 
 
 
 
 
 
 
cc75764
 
0d7efba
 
4229477
 
 
 
 
 
0d7efba
c6c42c2
0d7efba
4229477
0d7efba
 
 
 
 
 
 
 
802e608
 
 
 
 
 
 
 
 
 
4229477
 
 
 
 
 
 
 
 
 
0d7efba
 
 
 
 
 
 
 
 
 
 
802e608
 
 
 
 
0d7efba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4229477
 
 
 
 
 
 
 
 
0d7efba
 
 
c619e78
0d7efba
c619e78
 
 
 
 
 
 
 
0d7efba
c619e78
 
0d7efba
c619e78
 
 
0d7efba
c619e78
 
 
 
0d7efba
 
 
 
 
 
 
 
4229477
0d7efba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9607c5
4229477
 
 
 
 
 
 
 
 
0d7efba
 
 
 
 
 
 
 
4229477
0d7efba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4229477
 
0d7efba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import gradio as gr
import os
from dotenv import load_dotenv
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings 
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub
# from doctr.models import ocr_predictor
# from doctr.io import DocumentFile
from pathlib import Path
import chromadb
# Later Packages
from getpass import getpass

import weasyprint
import matplotlib.pyplot as plt
from langchain.document_loaders import PyPDFDirectoryLoader
load_dotenv()
# model = ocr_predictor(pretrained = True)
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
openai_key = os.getenv("OPEN_API_KEY")
# default_persist_directory = './chroma_HF/'
list_llm = ["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
    "google/gemma-7b-it","google/gemma-2b-it", \
    "HuggingFaceH4/zephyr-7b-beta", \
    "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "tiiuae/falcon-7b-instruct", \
    "google/flan-t5-xxl"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
#Extract text data from doctr reaponse
def extract_value_from_response(response):
    value = ''
    for page in response.pages:
        for block in page.blocks:
            for line in block.lines:
                for word in line.words:
                    value += " "+word.value
    return value

# Craete PDf from URL
def create_pdf_from_url(url):
    pdf = weasyprint.HTML(url).write_pdf()
    output_dir = "pdfDir"
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    file_path = os.path.join(output_dir,'url_pdf.pdf')
    with open(file_path,'wb') as f:
        f.write(pdf)
    return file_path
# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
    # Processing for one document only
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size = chunk_size, 
        chunk_overlap = chunk_overlap)
    doc_splits = text_splitter.split_documents(pages)
    # if len(doc_splits) == 0:
    #     doc = DocumentFile.from_pdf(list_file_path[0])
    #     result = model(doc)
    #     response = extract_value_from_response(result)
    #     doc_splits = text_splitter.split_documents(response)
    return doc_splits

# Create vector database
def create_db(splits, collection_name):
    embedding = HuggingFaceEmbeddings()
    new_client = chromadb.EphemeralClient()
    vectordb = Chroma.from_documents(
        documents = splits,
        embedding = embedding,
        client = new_client,
        collection_name = collection_name,
        # persist_directory=default_persist_directory
    )
    return vectordb


# Load vector database
def load_db():
    embedding = HuggingFaceEmbeddings()
    vectordb = Chroma( embedding_function = embedding)
    return vectordb


# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    progress(0.1, desc="Initializing HF tokenizer...")    
    # HuggingFaceHub uses HF inference endpoints
    progress(0.5, desc="Initializing HF Hub...")
    # Use of trust_remote_code as model_kwargs
    # Warning: langchain issue
    # URL: https://github.com/langchain-ai/langchain/issues/6080
    if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
        llm = HuggingFaceHub(
            repo_id=llm_model, 
            model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
        )
    elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
        llm = HuggingFaceHub(
            repo_id=llm_model, 
            model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
        )
    else:
        llm = HuggingFaceHub(
            repo_id=llm_model, 
            model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
        )
    
    progress(0.75, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    progress(0.8, desc="Defining retrieval chain...")
    retriever = vector_db.as_retriever()
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever = retriever,
        chain_type = "stuff", 
        memory = memory,
        # combine_docs_chain_kwargs={"prompt": your_prompt})
        return_source_documents=True,
        #return_generated_question=False,
        verbose = False,
    )
    progress(0.9, desc="Done!")
    return qa_chain


# Initialize database
def initialize_database(list_file_obj, chunk_size, chunk_overlap, vector_db, url, progress = gr.Progress()):
    if url != "":
       file_path = create_pdf_from_url(url)
       list_file_obj = []
       list_file_obj.append(file_path)
       list_file_path = list_file_obj
    else:
        # Create list of documents (when valid)
        list_file_path = [x.name for x in list_file_obj if x is not None]
    # Create collection_name for vector database
    progress(0.1, desc="Creating collection name...")
    collection_name = Path(list_file_path[0]).stem
    
    # Fix potential issues from naming convention
    ## Remove spaces
    collection_name = collection_name.replace(" ", "-")
    
    ## Ensure it meets the minimum length (3 characters)
    if len(collection_name) < 3:
        collection_name += "-XX"  # Append extra characters if too short
    
    ## Limit the length to 50 characters
    collection_name = collection_name[:50]
    
    ## Enforce that it starts with an alphanumeric character
    if not collection_name[0].isalnum():
        collection_name = 'A' + collection_name[1:]
    
    ## Enforce that it ends with an alphanumeric character
    if not collection_name[-1].isalnum():
        collection_name = collection_name[:-1] + 'Z'
    
    # Print the collection name for verification
    print('Collection name:', collection_name)
    print('Collection name: ', collection_name)
    progress(0.25, desc="Loading document...")
    # Load document and create splits
    doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
    # Create or load vector database
    progress(0.7, desc="Generating vector database...")
    # global vector_db
    vector_db = create_db(doc_splits, collection_name)
    return vector_db, collection_name, gr.update(value = ""), "Complete!"


def re_initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
    llm_name = list_llm[llm_option]
    print("llm_name: ",llm_name)
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
    return qa_chain


def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history
    

def conversation(qa_chain, message, history, llm_option):
    formatted_chat_history = format_chat_history(message, history)
    # Generate response using QA chain 
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(value = ""), new_history
    

def upload_file(file_obj):
    list_file_path = []
    for idx, file in enumerate(file_obj):
        file_path = file_obj.name
        list_file_path.append(file_path)
    # print(file_path)
    return list_file_path


def demo():
    with gr.Blocks(theme = "base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()
        gr.Markdown(
        '''
        <div style="text-align:center;">
            <span style="font-size:3em; font-weight:bold;">PDF Document Chatbot</span>
        </div>
        ''')
        with gr.Row():
            with gr.Row():
                with gr.Column():
                    document = gr.Files(file_count="multiple", file_types=[".pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
                    with gr.Row():
                            gr.Markdown(
                            '''
                            <div style="text-align:center;">
                                <span style="font-size:2em; font-weight:bold;">OR</span>
                            </div>
                            ''')
                    with gr.Row():
                        url = gr.Textbox(placeholder = "Enter your URL Here")
                    with gr.Row():
                        db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database", visible = False)
                    with gr.Accordion("Advanced options - Document text splitter", open=False, visible = False):
                        with gr.Row():
                            slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True, visible = False)
                        with gr.Row():
                            slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True, visible = False)
                    llm_btn = gr.Radio(list_llm_simple, label = "LLM models", type = "index", info = "Choose your LLM model")
                    db_progres = gr.Textbox(label="Vector database initialization", value="None")
                    with gr.Row():
                        submit_file = gr.Button("Submit File")
            with gr.Row():
                with gr.Column():
                    chatbot = gr.Chatbot()
                    msg = gr.Textbox(placeholder = "Type Your Message")
                    with gr.Accordion("Advanced options - LLM model", open = False):
                        with gr.Row():
                            slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
                        with gr.Row():
                            slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
                        with gr.Row():
                            slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)                  
                    with gr.Row():
                        submit_btn = gr.Button("Submit")
                        # clear_btn = gr.ClearButton([msg2, chatbot])
        # Preprocessing events
        #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
        submit_file.click(initialize_database, \
            inputs=[document, slider_chunk_size, slider_chunk_overlap, vector_db, url], \
            outputs = [vector_db, collection_name, url, db_progres])
        llm_btn.change(
            re_initialize_LLM, \
            inputs = [llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
            outputs = [qa_chain]
        )
        msg.submit(conversation, \
            inputs=[qa_chain, msg, chatbot, llm_btn], \
            outputs=[qa_chain, msg, chatbot], \
            queue=False)
        submit_btn.click(conversation, \
            inputs=[qa_chain, msg, chatbot, llm_btn], \
            outputs=[qa_chain, msg, chatbot], \
            queue=False)
    demo.queue().launch(share = True, debug = True)


if __name__ == "__main__":
    demo()