Spaces:
Running
Running
File size: 12,336 Bytes
0d7efba cc75764 0d7efba 4229477 0d7efba c6c42c2 0d7efba 4229477 0d7efba 802e608 4229477 0d7efba 802e608 0d7efba 4229477 0d7efba c619e78 0d7efba c619e78 0d7efba c619e78 0d7efba c619e78 0d7efba c619e78 0d7efba 4229477 0d7efba e9607c5 4229477 0d7efba 4229477 0d7efba 4229477 0d7efba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import gradio as gr
import os
from dotenv import load_dotenv
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub
# from doctr.models import ocr_predictor
# from doctr.io import DocumentFile
from pathlib import Path
import chromadb
# Later Packages
from getpass import getpass
import weasyprint
import matplotlib.pyplot as plt
from langchain.document_loaders import PyPDFDirectoryLoader
load_dotenv()
# model = ocr_predictor(pretrained = True)
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
openai_key = os.getenv("OPEN_API_KEY")
# default_persist_directory = './chroma_HF/'
list_llm = ["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
"google/gemma-7b-it","google/gemma-2b-it", \
"HuggingFaceH4/zephyr-7b-beta", \
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "tiiuae/falcon-7b-instruct", \
"google/flan-t5-xxl"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
#Extract text data from doctr reaponse
def extract_value_from_response(response):
value = ''
for page in response.pages:
for block in page.blocks:
for line in block.lines:
for word in line.words:
value += " "+word.value
return value
# Craete PDf from URL
def create_pdf_from_url(url):
pdf = weasyprint.HTML(url).write_pdf()
output_dir = "pdfDir"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
file_path = os.path.join(output_dir,'url_pdf.pdf')
with open(file_path,'wb') as f:
f.write(pdf)
return file_path
# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
# Processing for one document only
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = chunk_size,
chunk_overlap = chunk_overlap)
doc_splits = text_splitter.split_documents(pages)
# if len(doc_splits) == 0:
# doc = DocumentFile.from_pdf(list_file_path[0])
# result = model(doc)
# response = extract_value_from_response(result)
# doc_splits = text_splitter.split_documents(response)
return doc_splits
# Create vector database
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents = splits,
embedding = embedding,
client = new_client,
collection_name = collection_name,
# persist_directory=default_persist_directory
)
return vectordb
# Load vector database
def load_db():
embedding = HuggingFaceEmbeddings()
vectordb = Chroma( embedding_function = embedding)
return vectordb
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
progress(0.1, desc="Initializing HF tokenizer...")
# HuggingFaceHub uses HF inference endpoints
progress(0.5, desc="Initializing HF Hub...")
# Use of trust_remote_code as model_kwargs
# Warning: langchain issue
# URL: https://github.com/langchain-ai/langchain/issues/6080
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
llm = HuggingFaceHub(
repo_id=llm_model,
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
)
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
llm = HuggingFaceHub(
repo_id=llm_model,
model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
)
else:
llm = HuggingFaceHub(
repo_id=llm_model,
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
)
progress(0.75, desc="Defining buffer memory...")
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
progress(0.8, desc="Defining retrieval chain...")
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever = retriever,
chain_type = "stuff",
memory = memory,
# combine_docs_chain_kwargs={"prompt": your_prompt})
return_source_documents=True,
#return_generated_question=False,
verbose = False,
)
progress(0.9, desc="Done!")
return qa_chain
# Initialize database
def initialize_database(list_file_obj, chunk_size, chunk_overlap, vector_db, url, progress = gr.Progress()):
if url != "":
file_path = create_pdf_from_url(url)
list_file_obj = []
list_file_obj.append(file_path)
list_file_path = list_file_obj
else:
# Create list of documents (when valid)
list_file_path = [x.name for x in list_file_obj if x is not None]
# Create collection_name for vector database
progress(0.1, desc="Creating collection name...")
collection_name = Path(list_file_path[0]).stem
# Fix potential issues from naming convention
## Remove spaces
collection_name = collection_name.replace(" ", "-")
## Ensure it meets the minimum length (3 characters)
if len(collection_name) < 3:
collection_name += "-XX" # Append extra characters if too short
## Limit the length to 50 characters
collection_name = collection_name[:50]
## Enforce that it starts with an alphanumeric character
if not collection_name[0].isalnum():
collection_name = 'A' + collection_name[1:]
## Enforce that it ends with an alphanumeric character
if not collection_name[-1].isalnum():
collection_name = collection_name[:-1] + 'Z'
# Print the collection name for verification
print('Collection name:', collection_name)
print('Collection name: ', collection_name)
progress(0.25, desc="Loading document...")
# Load document and create splits
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
# Create or load vector database
progress(0.7, desc="Generating vector database...")
# global vector_db
vector_db = create_db(doc_splits, collection_name)
return vector_db, collection_name, gr.update(value = ""), "Complete!"
def re_initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
llm_name = list_llm[llm_option]
print("llm_name: ",llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
return qa_chain
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history, llm_option):
formatted_chat_history = format_chat_history(message, history)
# Generate response using QA chain
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value = ""), new_history
def upload_file(file_obj):
list_file_path = []
for idx, file in enumerate(file_obj):
file_path = file_obj.name
list_file_path.append(file_path)
# print(file_path)
return list_file_path
def demo():
with gr.Blocks(theme = "base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
gr.Markdown(
'''
<div style="text-align:center;">
<span style="font-size:3em; font-weight:bold;">PDF Document Chatbot</span>
</div>
''')
with gr.Row():
with gr.Row():
with gr.Column():
document = gr.Files(file_count="multiple", file_types=[".pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
with gr.Row():
gr.Markdown(
'''
<div style="text-align:center;">
<span style="font-size:2em; font-weight:bold;">OR</span>
</div>
''')
with gr.Row():
url = gr.Textbox(placeholder = "Enter your URL Here")
with gr.Row():
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database", visible = False)
with gr.Accordion("Advanced options - Document text splitter", open=False, visible = False):
with gr.Row():
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True, visible = False)
with gr.Row():
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True, visible = False)
llm_btn = gr.Radio(list_llm_simple, label = "LLM models", type = "index", info = "Choose your LLM model")
db_progres = gr.Textbox(label="Vector database initialization", value="None")
with gr.Row():
submit_file = gr.Button("Submit File")
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot()
msg = gr.Textbox(placeholder = "Type Your Message")
with gr.Accordion("Advanced options - LLM model", open = False):
with gr.Row():
slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
with gr.Row():
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
with gr.Row():
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
with gr.Row():
submit_btn = gr.Button("Submit")
# clear_btn = gr.ClearButton([msg2, chatbot])
# Preprocessing events
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
submit_file.click(initialize_database, \
inputs=[document, slider_chunk_size, slider_chunk_overlap, vector_db, url], \
outputs = [vector_db, collection_name, url, db_progres])
llm_btn.change(
re_initialize_LLM, \
inputs = [llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
outputs = [qa_chain]
)
msg.submit(conversation, \
inputs=[qa_chain, msg, chatbot, llm_btn], \
outputs=[qa_chain, msg, chatbot], \
queue=False)
submit_btn.click(conversation, \
inputs=[qa_chain, msg, chatbot, llm_btn], \
outputs=[qa_chain, msg, chatbot], \
queue=False)
demo.queue().launch(share = True, debug = True)
if __name__ == "__main__":
demo() |