Aarish200 commited on
Commit
fd067cd
1 Parent(s): fd7699b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -0
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from ultralyticsplus import YOLO, render_result
3
+ import cv2
4
+ import tempfile
5
+ from PIL import Image
6
+
7
+ # Title of the Streamlit app
8
+ st.title("Stock Market Future Prediction")
9
+
10
+ # Instructions
11
+ st.write("Upload an image and the model will predict future stock market trends.")
12
+
13
+ # Upload an image
14
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
15
+
16
+ if uploaded_file is not None:
17
+ # Save the uploaded file to a temporary location
18
+ with tempfile.NamedTemporaryFile(delete=False) as temp:
19
+ temp.write(uploaded_file.read())
20
+ temp_image_path = temp.name
21
+
22
+ # Display the uploaded image
23
+ image = Image.open(uploaded_file)
24
+ st.image(image, caption='Uploaded Image', use_column_width=True)
25
+
26
+ # Load model
27
+ model = YOLO('foduucom/stockmarket-future-prediction')
28
+
29
+ # Set model parameters
30
+ model.overrides['conf'] = 0.25 # NMS confidence threshold
31
+ model.overrides['iou'] = 0.45 # NMS IoU threshold
32
+ model.overrides['agnostic_nms'] = False # NMS class-agnostic
33
+ model.overrides['max_det'] = 1000 # maximum number of detections per image
34
+
35
+ # Perform inference
36
+ results = model.predict(temp_image_path)
37
+
38
+ # Display results
39
+ st.write("Prediction Results:")
40
+ st.write(results[0].boxes)
41
+
42
+ # Render and display the result
43
+ render = render_result(model=model, image=temp_image_path, result=results[0])
44
+ render_image = Image.fromarray(cv2.cvtColor(render.img, cv2.COLOR_BGR2RGB))
45
+ st.image(render_image, caption='Result Image', use_column_width=True)