import torch from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder from xora.models.transformers.transformer3d import Transformer3DModel from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier from xora.schedulers.rf import RectifiedFlowScheduler from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline from pathlib import Path from transformers import T5EncoderModel, T5Tokenizer import safetensors.torch import json import argparse def load_vae(vae_dir): vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors" vae_config_path = vae_dir / "config.json" with open(vae_config_path, 'r') as f: vae_config = json.load(f) vae = CausalVideoAutoencoder.from_config(vae_config) vae_state_dict = safetensors.torch.load_file(vae_ckpt_path) vae.load_state_dict(vae_state_dict) return vae.cuda().to(torch.bfloat16) def load_unet(unet_dir): unet_ckpt_path = unet_dir / "diffusion_pytorch_model.safetensors" unet_config_path = unet_dir / "config.json" transformer_config = Transformer3DModel.load_config(unet_config_path) transformer = Transformer3DModel.from_config(transformer_config) unet_state_dict = safetensors.torch.load_file(unet_ckpt_path) transformer.load_state_dict(unet_state_dict, strict=True) return transformer.cuda() def load_scheduler(scheduler_dir): scheduler_config_path = scheduler_dir / "scheduler_config.json" scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path) return RectifiedFlowScheduler.from_config(scheduler_config) def main(): # Parse command line arguments parser = argparse.ArgumentParser(description='Load models from separate directories') parser.add_argument('--separate_dir', type=str, required=True, help='Path to the directory containing unet, vae, and scheduler subdirectories') args = parser.parse_args() # Paths for the separate mode directories separate_dir = Path(args.separate_dir) unet_dir = separate_dir / 'unet' vae_dir = separate_dir / 'vae' scheduler_dir = separate_dir / 'scheduler' # Load models vae = load_vae(vae_dir) unet = load_unet(unet_dir) scheduler = load_scheduler(scheduler_dir) # Patchifier (remains the same) patchifier = SymmetricPatchifier(patch_size=1) # text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to("cuda") # tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer") # Use submodels for the pipeline submodel_dict = { "transformer": unet, # using unet for transformer "patchifier": patchifier, "text_encoder": None, "tokenizer": None, "scheduler": scheduler, "vae": vae, } model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS" pipeline = VideoPixArtAlphaPipeline( **submodel_dict ).to("cuda") num_inference_steps = 20 num_images_per_prompt = 1 guidance_scale = 3 height = 512 width = 768 num_frames = 57 frame_rate = 25 # Sample input stays the same sample = torch.load("/opt/sample_media.pt") for key, item in sample.items(): if item is not None: sample[key] = item.cuda() # media_items = torch.load("/opt/sample_media.pt") # Generate images (video frames) images = pipeline( num_inference_steps=num_inference_steps, num_images_per_prompt=num_images_per_prompt, guidance_scale=guidance_scale, generator=None, output_type="pt", callback_on_step_end=None, height=height, width=width, num_frames=num_frames, frame_rate=frame_rate, **sample, is_video=True, vae_per_channel_normalize=True, ).images print("Generated video frames.") if __name__ == "__main__": main()