Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
from typing import Any | |
class BatchNormConv1d(nn.Module): | |
""" | |
A nn.Conv1d followed by an optional activation function, and nn.BatchNorm1d | |
""" | |
def __init__( | |
self, | |
in_dim: int, | |
out_dim: int, | |
kernel_size: int, | |
stride: int, | |
padding: int, | |
activation: Any = None, | |
): | |
super().__init__() | |
self.conv1d = nn.Conv1d( | |
in_dim, | |
out_dim, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
bias=False, | |
) | |
self.bn = nn.BatchNorm1d(out_dim) | |
self.activation = activation | |
def forward(self, x: Any): | |
x = self.conv1d(x) | |
if self.activation is not None: | |
x = self.activation(x) | |
return self.bn(x) | |
class LinearNorm(torch.nn.Module): | |
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): | |
super().__init__() | |
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) | |
torch.nn.init.xavier_uniform_( | |
self.linear_layer.weight, | |
gain=torch.nn.init.calculate_gain(w_init_gain)) | |
def forward(self, x): | |
return self.linear_layer(x) | |
class ConvNorm(torch.nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, | |
padding=None, dilation=1, bias=True, w_init_gain='linear'): | |
super().__init__() | |
if padding is None: | |
assert(kernel_size % 2 == 1) | |
padding = int(dilation * (kernel_size - 1) / 2) | |
self.conv = torch.nn.Conv1d(in_channels, out_channels, | |
kernel_size=kernel_size, stride=stride, | |
padding=padding, dilation=dilation, | |
bias=bias) | |
torch.nn.init.xavier_uniform_( | |
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) | |
def forward(self, signal): | |
conv_signal = self.conv(signal) | |
return conv_signal | |