Ashaar / poetry_diacritizer /modules /tacotron_modules.py
Ababababababbababa's picture
Duplicate from arbml/Ashaar
6faf7e7
raw
history blame
5.37 kB
"""
Some custom modules that are used by the TTS model
"""
from typing import List
import torch
from torch import nn
from poetry_diacritizer.modules.layers import BatchNormConv1d
class Prenet(nn.Module):
"""
A prenet is a collection of linear layers with dropout(0.5),
and RELU activation function
Args:
config: the hyperparameters object
in_dim (int): the input dim
"""
def __init__(
self, in_dim: int, prenet_depth: List[int] = [256, 128], dropout: int = 0.5
):
""" Initializing the prenet module """
super().__init__()
in_sizes = [in_dim] + prenet_depth[:-1]
self.layers = nn.ModuleList(
[
nn.Linear(in_size, out_size)
for (in_size, out_size) in zip(in_sizes, prenet_depth)
]
)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(dropout)
def forward(self, inputs: torch.Tensor):
"""Calculate forward propagation
Args:
inputs (batch_size, seqLen): the inputs to the prenet, the input shapes could
be different as it is being used in both encoder and decoder.
Returns:
Tensor: the output of the forward propagation
"""
for linear in self.layers:
inputs = self.dropout(self.relu(linear(inputs)))
return inputs
class Highway(nn.Module):
"""Highway Networks were developed by (Srivastava et al., 2015)
to overcome the difficulty of training deep neural networks
(https://arxiv.org/abs/1507.06228).
Args:
in_size (int): the input size
out_size (int): the output size
"""
def __init__(self, in_size, out_size):
"""
Initializing Highway networks
"""
super().__init__()
self.H = nn.Linear(in_size, out_size)
self.H.bias.data.zero_()
self.T = nn.Linear(in_size, out_size)
self.T.bias.data.fill_(-1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, inputs: torch.Tensor):
"""Calculate forward propagation
Args:
inputs (Tensor):
"""
H = self.relu(self.H(inputs))
T = self.sigmoid(self.T(inputs))
return H * T + inputs * (1.0 - T)
class CBHG(nn.Module):
"""The CBHG module (1-D Convolution Bank + Highway network + Bidirectional GRU)
was proposed by (Lee et al., 2017, https://www.aclweb.org/anthology/Q17-1026)
for a character-level NMT model.
It was adapted by (Wang et al., 2017) for building the Tacotron.
It is used in both the encoder and decoder with different parameters.
"""
def __init__(
self,
in_dim: int,
out_dim: int,
K: int,
projections: List[int],
highway_layers: int = 4,
):
"""Initializing the CBHG module
Args:
in_dim (int): the input size
out_dim (int): the output size
k (int): number of filters
"""
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.relu = nn.ReLU()
self.conv1d_banks = nn.ModuleList(
[
BatchNormConv1d(
in_dim,
in_dim,
kernel_size=k,
stride=1,
padding=k // 2,
activation=self.relu,
)
for k in range(1, K + 1)
]
)
self.max_pool1d = nn.MaxPool1d(kernel_size=2, stride=1, padding=1)
in_sizes = [K * in_dim] + projections[:-1]
activations = [self.relu] * (len(projections) - 1) + [None]
self.conv1d_projections = nn.ModuleList(
[
BatchNormConv1d(
in_size, out_size, kernel_size=3, stride=1, padding=1, activation=ac
)
for (in_size, out_size, ac) in zip(in_sizes, projections, activations)
]
)
self.pre_highway = nn.Linear(projections[-1], in_dim, bias=False)
self.highways = nn.ModuleList([Highway(in_dim, in_dim) for _ in range(4)])
self.gru = nn.GRU(in_dim, out_dim, 1, batch_first=True, bidirectional=True)
def forward(self, inputs, input_lengths=None):
# (B, T_in, in_dim)
x = inputs
x = x.transpose(1, 2)
T = x.size(-1)
# (B, in_dim*K, T_in)
# Concat conv1d bank outputs
x = torch.cat([conv1d(x)[:, :, :T] for conv1d in self.conv1d_banks], dim=1)
assert x.size(1) == self.in_dim * len(self.conv1d_banks)
x = self.max_pool1d(x)[:, :, :T]
for conv1d in self.conv1d_projections:
x = conv1d(x)
# (B, T_in, in_dim)
# Back to the original shape
x = x.transpose(1, 2)
if x.size(-1) != self.in_dim:
x = self.pre_highway(x)
# Residual connection
x += inputs
for highway in self.highways:
x = highway(x)
if input_lengths is not None:
x = nn.utils.rnn.pack_padded_sequence(x, input_lengths, batch_first=True)
# (B, T_in, in_dim*2)
self.gru.flatten_parameters()
outputs, _ = self.gru(x)
if input_lengths is not None:
outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True)
return outputs