Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
|
3 |
+
from llama_index.llms.huggingface import HuggingFaceLLM
|
4 |
+
import torch
|
5 |
+
|
6 |
+
documents = SimpleDirectoryReader("/content/Data").load_data()
|
7 |
+
from llama_index.core.prompts.prompts import SimpleInputPrompt
|
8 |
+
|
9 |
+
system_prompt = "You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided."
|
10 |
+
|
11 |
+
|
12 |
+
query_wrapper_prompt = SimpleInputPrompt("<|USER|>{query_str}<|ASSISTANT|>")
|
13 |
+
|
14 |
+
|
15 |
+
llm = HuggingFaceLLM(
|
16 |
+
context_window=4096,
|
17 |
+
max_new_tokens=256,
|
18 |
+
generate_kwargs={"temperature": 0.0, "do_sample": False},
|
19 |
+
system_prompt=system_prompt,
|
20 |
+
query_wrapper_prompt=query_wrapper_prompt,
|
21 |
+
tokenizer_name="microsoft/phi-2",
|
22 |
+
model_name="microsoft/phi-2",
|
23 |
+
device_map="cuda",
|
24 |
+
# uncomment this if using CUDA to reduce memory usage
|
25 |
+
model_kwargs={"torch_dtype": torch.bfloat16}
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
!pip install llama-index-embeddings-huggingface
|
30 |
+
|
31 |
+
|
32 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
33 |
+
|
34 |
+
# loads BAAI/bge-small-en
|
35 |
+
# embed_model = HuggingFaceEmbedding()
|
36 |
+
|
37 |
+
# loads BAAI/bge-small-en-v1.5
|
38 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
39 |
+
|
40 |
+
service_context = ServiceContext.from_defaults(
|
41 |
+
chunk_size=1024,
|
42 |
+
llm=llm,
|
43 |
+
embed_model=embed_model
|
44 |
+
)
|
45 |
+
|
46 |
+
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
47 |
+
|
48 |
+
query_engine = index.as_query_engine()
|
49 |
+
|
50 |
+
def predict(input, history):
|
51 |
+
response = query_engine.query(input)
|
52 |
+
return str(response)
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
import gradio as gr
|
57 |
+
|
58 |
+
gr.ChatInterface(predict).launch(share=True)
|