from transformers import AutoModelForCausalLM, AutoTokenizer ,T5ForConditionalGeneration ,T5Tokenizer import re import torch torch.set_default_tensor_type(torch.cuda.FloatTensor) import os import io import warnings from PIL import Image from stability_sdk import client import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation import gradio as gr def generate_post(model,tokenizer,company_name , description , example1 ,example2 ,example3): prompt = f""" {company_name} {description}, {example1}. {company_name} {description}, {example2}. {company_name} {description}, {example3}. {company_name} {description}, """ input_ids = tokenizer(prompt, return_tensors="pt").to(0) sample = model.generate(**input_ids, top_k=0, temperature=0.7, do_sample = True , max_new_tokens = 70, repetition_penalty= 5.4) outputs = tokenizer.decode(sample[0]) res = outputs.split(f""" {company_name} {description}, {example1}. {company_name} {description}, {example2}. {company_name} {description}, {example3}. {company_name} {description}, """)[1] res = re.sub('[#]\w+' , " ", res) res = re.sub('@[^\s]\w+',' ', res) res = re.sub(r'http\S+', ' ', res) res = res.replace("\n" ," ") res = re.sub(' +', ' ',res) return res def generate_caption(model , text_body ,tokenizer ,max_length): test_sent = 'generate: ' + text_body input = tokenizer.encode(test_sent , return_tensors="pt")#.to('cuda') outs = model.generate(input , max_length = max_length, do_sample = True , temperature = 0.7, min_length = 8, repetition_penalty = 5.4, max_time = 12, top_p = 1.0, top_k = 50) sent = tokenizer.decode(outs[0], skip_special_tokens=True,clean_up_tokenization_spaces=True) return sent def demo_smg(company_name ,description , example1 , example2 , example3): access_token = "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" model_cp= T5ForConditionalGeneration.from_pretrained("Abdelmageed95/caption_model" , use_auth_token = access_token ) tokenizer = T5Tokenizer.from_pretrained('t5-base') model_bm = AutoModelForCausalLM.from_pretrained("bigscience/bloom-3b" , use_auth_token = access_token) tokenizer_bm = AutoTokenizer.from_pretrained("bigscience/bloom-3b") res = generate_post( model_bm , tokenizer_bm, company_name , description , example1 , example2 , example3) generated_caption = generate_caption( model_cp , res, tokenizer , 30) os.environ['STABILITY_HOST'] = "grpc.stability.ai:443" os.environ['STABILITY_KEY'] = "sk-t4x1wv6WFgTANF7O1TkWDJZzxXxQZeU6X7oybl6rdCOOiHIk" stability_api = client.StabilityInference( key=os.environ['STABILITY_KEY'], verbose=True) generated_caption = generated_caption + ", intricate, highly detailed, smooth , sharp focus, 8k" answers = stability_api.generate( prompt= generated_caption , #seed=34567, steps= 70 ) for resp in answers: for artifact in resp.artifacts: if artifact.finish_reason == generation.FILTER: warnings.warn( "Your request activated the API's safety filters and could not be processed." "Please modify the prompt and try again.") if artifact.type == generation.ARTIFACT_IMAGE: img = Image.open(io.BytesIO(artifact.binary)) return res, generated_caption ,img company_name = "ADES Group" description = "delivers full-scale petroleum services; from onshore and offshore drilling to full oil & gas projects and services, with emphasis on the HSE culture while maintaining excellence in operation targets." example1 = """Throwback to ADM 680 Team during their Cyber-chair controls Course in August, Our development strategy at ADES does not only focus on enriching the technical expertise of our teams in their specialization in Jack- up rigs, but also in providing access to latest operational models""" example2 = """With complexity of oil & gas equipment and the seriousness of failure and its consequences confronting our people, it has become a necessity to equip our Asset Management Team with leading methodologies and techniques that enable them to think and act proactively""" example3 = """ Part of our people development strategy is providing our senior leadership with the latest industry technologies and world class practices and standards""" txt , generated_caption , im = demo_smg( company_name, description , example1 , example2 , example3) print(txt) print(generated_caption) # demo = gr.Interface( # fn= demo_smg, # inputs=["text","text" , "text" ,"text" ,"text"], # outputs=["text", "text", "image" ] # ) # demo.launch(share=True)