Spaces:
Runtime error
Runtime error
Commit
•
4e12bd4
0
Parent(s):
Duplicate from Tune-A-Video-library/Tune-A-Video-Training-UI
Browse filesCo-authored-by: hysts <hysts@users.noreply.huggingface.co>
- .gitattributes +35 -0
- .gitignore +164 -0
- .gitmodules +3 -0
- .pre-commit-config.yaml +37 -0
- .style.yapf +5 -0
- Dockerfile +59 -0
- LICENSE +21 -0
- README.md +12 -0
- Tune-A-Video +1 -0
- app.py +93 -0
- app_inference.py +172 -0
- app_system_monitor.py +87 -0
- app_training.py +155 -0
- app_upload.py +69 -0
- constants.py +11 -0
- inference.py +109 -0
- packages.txt +1 -0
- patch +15 -0
- requirements-monitor.txt +4 -0
- requirements.txt +19 -0
- style.css +3 -0
- trainer.py +145 -0
- uploader.py +63 -0
- utils.py +65 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.whl filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
27 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
checkpoints/
|
2 |
+
experiments/
|
3 |
+
|
4 |
+
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# C extensions
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# Distribution / packaging
|
14 |
+
.Python
|
15 |
+
build/
|
16 |
+
develop-eggs/
|
17 |
+
dist/
|
18 |
+
downloads/
|
19 |
+
eggs/
|
20 |
+
.eggs/
|
21 |
+
lib/
|
22 |
+
lib64/
|
23 |
+
parts/
|
24 |
+
sdist/
|
25 |
+
var/
|
26 |
+
wheels/
|
27 |
+
share/python-wheels/
|
28 |
+
*.egg-info/
|
29 |
+
.installed.cfg
|
30 |
+
*.egg
|
31 |
+
MANIFEST
|
32 |
+
|
33 |
+
# PyInstaller
|
34 |
+
# Usually these files are written by a python script from a template
|
35 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
36 |
+
*.manifest
|
37 |
+
*.spec
|
38 |
+
|
39 |
+
# Installer logs
|
40 |
+
pip-log.txt
|
41 |
+
pip-delete-this-directory.txt
|
42 |
+
|
43 |
+
# Unit test / coverage reports
|
44 |
+
htmlcov/
|
45 |
+
.tox/
|
46 |
+
.nox/
|
47 |
+
.coverage
|
48 |
+
.coverage.*
|
49 |
+
.cache
|
50 |
+
nosetests.xml
|
51 |
+
coverage.xml
|
52 |
+
*.cover
|
53 |
+
*.py,cover
|
54 |
+
.hypothesis/
|
55 |
+
.pytest_cache/
|
56 |
+
cover/
|
57 |
+
|
58 |
+
# Translations
|
59 |
+
*.mo
|
60 |
+
*.pot
|
61 |
+
|
62 |
+
# Django stuff:
|
63 |
+
*.log
|
64 |
+
local_settings.py
|
65 |
+
db.sqlite3
|
66 |
+
db.sqlite3-journal
|
67 |
+
|
68 |
+
# Flask stuff:
|
69 |
+
instance/
|
70 |
+
.webassets-cache
|
71 |
+
|
72 |
+
# Scrapy stuff:
|
73 |
+
.scrapy
|
74 |
+
|
75 |
+
# Sphinx documentation
|
76 |
+
docs/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
.pybuilder/
|
80 |
+
target/
|
81 |
+
|
82 |
+
# Jupyter Notebook
|
83 |
+
.ipynb_checkpoints
|
84 |
+
|
85 |
+
# IPython
|
86 |
+
profile_default/
|
87 |
+
ipython_config.py
|
88 |
+
|
89 |
+
# pyenv
|
90 |
+
# For a library or package, you might want to ignore these files since the code is
|
91 |
+
# intended to run in multiple environments; otherwise, check them in:
|
92 |
+
# .python-version
|
93 |
+
|
94 |
+
# pipenv
|
95 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
96 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
97 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
98 |
+
# install all needed dependencies.
|
99 |
+
#Pipfile.lock
|
100 |
+
|
101 |
+
# poetry
|
102 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
103 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
104 |
+
# commonly ignored for libraries.
|
105 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
106 |
+
#poetry.lock
|
107 |
+
|
108 |
+
# pdm
|
109 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
110 |
+
#pdm.lock
|
111 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
112 |
+
# in version control.
|
113 |
+
# https://pdm.fming.dev/#use-with-ide
|
114 |
+
.pdm.toml
|
115 |
+
|
116 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
117 |
+
__pypackages__/
|
118 |
+
|
119 |
+
# Celery stuff
|
120 |
+
celerybeat-schedule
|
121 |
+
celerybeat.pid
|
122 |
+
|
123 |
+
# SageMath parsed files
|
124 |
+
*.sage.py
|
125 |
+
|
126 |
+
# Environments
|
127 |
+
.env
|
128 |
+
.venv
|
129 |
+
env/
|
130 |
+
venv/
|
131 |
+
ENV/
|
132 |
+
env.bak/
|
133 |
+
venv.bak/
|
134 |
+
|
135 |
+
# Spyder project settings
|
136 |
+
.spyderproject
|
137 |
+
.spyproject
|
138 |
+
|
139 |
+
# Rope project settings
|
140 |
+
.ropeproject
|
141 |
+
|
142 |
+
# mkdocs documentation
|
143 |
+
/site
|
144 |
+
|
145 |
+
# mypy
|
146 |
+
.mypy_cache/
|
147 |
+
.dmypy.json
|
148 |
+
dmypy.json
|
149 |
+
|
150 |
+
# Pyre type checker
|
151 |
+
.pyre/
|
152 |
+
|
153 |
+
# pytype static type analyzer
|
154 |
+
.pytype/
|
155 |
+
|
156 |
+
# Cython debug symbols
|
157 |
+
cython_debug/
|
158 |
+
|
159 |
+
# PyCharm
|
160 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
161 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
162 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
163 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
164 |
+
#.idea/
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "Tune-A-Video"]
|
2 |
+
path = Tune-A-Video
|
3 |
+
url = https://github.com/showlab/Tune-A-Video
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
exclude: patch
|
2 |
+
repos:
|
3 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
+
rev: v4.2.0
|
5 |
+
hooks:
|
6 |
+
- id: check-executables-have-shebangs
|
7 |
+
- id: check-json
|
8 |
+
- id: check-merge-conflict
|
9 |
+
- id: check-shebang-scripts-are-executable
|
10 |
+
- id: check-toml
|
11 |
+
- id: check-yaml
|
12 |
+
- id: double-quote-string-fixer
|
13 |
+
- id: end-of-file-fixer
|
14 |
+
- id: mixed-line-ending
|
15 |
+
args: ['--fix=lf']
|
16 |
+
- id: requirements-txt-fixer
|
17 |
+
- id: trailing-whitespace
|
18 |
+
- repo: https://github.com/myint/docformatter
|
19 |
+
rev: v1.4
|
20 |
+
hooks:
|
21 |
+
- id: docformatter
|
22 |
+
args: ['--in-place']
|
23 |
+
- repo: https://github.com/pycqa/isort
|
24 |
+
rev: 5.12.0
|
25 |
+
hooks:
|
26 |
+
- id: isort
|
27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
+
rev: v0.991
|
29 |
+
hooks:
|
30 |
+
- id: mypy
|
31 |
+
args: ['--ignore-missing-imports']
|
32 |
+
additional_dependencies: ['types-python-slugify']
|
33 |
+
- repo: https://github.com/google/yapf
|
34 |
+
rev: v0.32.0
|
35 |
+
hooks:
|
36 |
+
- id: yapf
|
37 |
+
args: ['--parallel', '--in-place']
|
.style.yapf
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[style]
|
2 |
+
based_on_style = pep8
|
3 |
+
blank_line_before_nested_class_or_def = false
|
4 |
+
spaces_before_comment = 2
|
5 |
+
split_before_logical_operator = true
|
Dockerfile
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:11.7.1-cudnn8-devel-ubuntu22.04
|
2 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
3 |
+
RUN apt-get update && \
|
4 |
+
apt-get upgrade -y && \
|
5 |
+
apt-get install -y --no-install-recommends \
|
6 |
+
git \
|
7 |
+
git-lfs \
|
8 |
+
wget \
|
9 |
+
curl \
|
10 |
+
# ffmpeg \
|
11 |
+
ffmpeg \
|
12 |
+
x264 \
|
13 |
+
# python build dependencies \
|
14 |
+
build-essential \
|
15 |
+
libssl-dev \
|
16 |
+
zlib1g-dev \
|
17 |
+
libbz2-dev \
|
18 |
+
libreadline-dev \
|
19 |
+
libsqlite3-dev \
|
20 |
+
libncursesw5-dev \
|
21 |
+
xz-utils \
|
22 |
+
tk-dev \
|
23 |
+
libxml2-dev \
|
24 |
+
libxmlsec1-dev \
|
25 |
+
libffi-dev \
|
26 |
+
liblzma-dev && \
|
27 |
+
apt-get clean && \
|
28 |
+
rm -rf /var/lib/apt/lists/*
|
29 |
+
|
30 |
+
RUN useradd -m -u 1000 user
|
31 |
+
USER user
|
32 |
+
ENV HOME=/home/user \
|
33 |
+
PATH=/home/user/.local/bin:${PATH}
|
34 |
+
WORKDIR ${HOME}/app
|
35 |
+
|
36 |
+
RUN curl https://pyenv.run | bash
|
37 |
+
ENV PATH=${HOME}/.pyenv/shims:${HOME}/.pyenv/bin:${PATH}
|
38 |
+
ARG PYTHON_VERSION=3.10.11
|
39 |
+
RUN pyenv install ${PYTHON_VERSION} && \
|
40 |
+
pyenv global ${PYTHON_VERSION} && \
|
41 |
+
pyenv rehash && \
|
42 |
+
pip install --no-cache-dir -U pip setuptools wheel
|
43 |
+
|
44 |
+
RUN pip install --no-cache-dir -U torch==1.13.1 torchvision==0.14.1
|
45 |
+
COPY --chown=1000 requirements.txt /tmp/requirements.txt
|
46 |
+
RUN pip install --no-cache-dir -U -r /tmp/requirements.txt
|
47 |
+
COPY --chown=1000 requirements-monitor.txt /tmp/requirements-monitor.txt
|
48 |
+
RUN pip install --no-cache-dir -U -r /tmp/requirements-monitor.txt
|
49 |
+
|
50 |
+
COPY --chown=1000 . ${HOME}/app
|
51 |
+
RUN cd Tune-A-Video && patch -p1 < ../patch
|
52 |
+
ENV PYTHONPATH=${HOME}/app \
|
53 |
+
PYTHONUNBUFFERED=1 \
|
54 |
+
GRADIO_ALLOW_FLAGGING=never \
|
55 |
+
GRADIO_NUM_PORTS=1 \
|
56 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
57 |
+
GRADIO_THEME=huggingface \
|
58 |
+
SYSTEM=spaces
|
59 |
+
CMD ["python", "app.py"]
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 hysts
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Tune-A-Video Training UI
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: purple
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
license: mit
|
9 |
+
duplicated_from: Tune-A-Video-library/Tune-A-Video-Training-UI
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
Tune-A-Video
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit b2c8c3eeac0df5c5d9eccc4dd2153e17b83c638c
|
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import os
|
6 |
+
from subprocess import getoutput
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from app_inference import create_inference_demo
|
12 |
+
from app_system_monitor import create_monitor_demo
|
13 |
+
from app_training import create_training_demo
|
14 |
+
from app_upload import create_upload_demo
|
15 |
+
from inference import InferencePipeline
|
16 |
+
from trainer import Trainer
|
17 |
+
|
18 |
+
TITLE = '# [Tune-A-Video](https://tuneavideo.github.io/)'
|
19 |
+
|
20 |
+
ORIGINAL_SPACE_ID = 'Tune-A-Video-library/Tune-A-Video-Training-UI'
|
21 |
+
SPACE_ID = os.getenv('SPACE_ID')
|
22 |
+
GPU_DATA = getoutput('nvidia-smi')
|
23 |
+
SHARED_UI_WARNING = f'''## Attention - Training doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
|
24 |
+
|
25 |
+
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
|
26 |
+
'''
|
27 |
+
|
28 |
+
IS_SHARED_UI = SPACE_ID == ORIGINAL_SPACE_ID
|
29 |
+
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
|
30 |
+
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
|
31 |
+
else:
|
32 |
+
SETTINGS = 'Settings'
|
33 |
+
|
34 |
+
INVALID_GPU_WARNING = f'''## Attention - the specified GPU is invalid. Training may not work. Make sure you have selected a `T4 GPU` for this task.'''
|
35 |
+
|
36 |
+
CUDA_NOT_AVAILABLE_WARNING = f'''## Attention - Running on CPU.
|
37 |
+
<center>
|
38 |
+
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
39 |
+
You can use "T4 small/medium" to run this demo.
|
40 |
+
</center>
|
41 |
+
'''
|
42 |
+
|
43 |
+
HF_TOKEN_NOT_SPECIFIED_WARNING = f'''The environment variable `HF_TOKEN` is not specified. Feel free to specify your Hugging Face token with write permission if you don't want to manually provide it for every run.
|
44 |
+
|
45 |
+
You can check and create your Hugging Face tokens <a href="https://huggingface.co/settings/tokens" target="_blank">here</a>. You can specify environment variables in the "Repository secrets" section of the {SETTINGS} tab.
|
46 |
+
'''
|
47 |
+
|
48 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
49 |
+
|
50 |
+
|
51 |
+
def show_warning(warning_text: str) -> gr.Blocks:
|
52 |
+
with gr.Blocks() as demo:
|
53 |
+
with gr.Box():
|
54 |
+
gr.Markdown(warning_text)
|
55 |
+
return demo
|
56 |
+
|
57 |
+
|
58 |
+
pipe = InferencePipeline(HF_TOKEN)
|
59 |
+
trainer = Trainer()
|
60 |
+
|
61 |
+
with gr.Blocks(css='style.css') as demo:
|
62 |
+
if IS_SHARED_UI:
|
63 |
+
show_warning(SHARED_UI_WARNING)
|
64 |
+
elif not torch.cuda.is_available():
|
65 |
+
show_warning(CUDA_NOT_AVAILABLE_WARNING)
|
66 |
+
elif 'T4' not in GPU_DATA:
|
67 |
+
show_warning(INVALID_GPU_WARNING)
|
68 |
+
|
69 |
+
gr.Markdown(TITLE)
|
70 |
+
with gr.Tabs():
|
71 |
+
with gr.TabItem('Train'):
|
72 |
+
create_training_demo(trainer,
|
73 |
+
pipe,
|
74 |
+
disable_run_button=IS_SHARED_UI)
|
75 |
+
with gr.TabItem('Run'):
|
76 |
+
create_inference_demo(pipe,
|
77 |
+
HF_TOKEN,
|
78 |
+
disable_run_button=IS_SHARED_UI)
|
79 |
+
with gr.TabItem('Upload'):
|
80 |
+
gr.Markdown('''
|
81 |
+
- You can use this tab to upload models later if you choose not to upload models in training time or if upload in training time failed.
|
82 |
+
''')
|
83 |
+
create_upload_demo(disable_run_button=IS_SHARED_UI)
|
84 |
+
|
85 |
+
with gr.Row():
|
86 |
+
if not IS_SHARED_UI and not os.getenv('DISABLE_SYSTEM_MONITOR'):
|
87 |
+
with gr.Accordion(label='System info', open=False):
|
88 |
+
create_monitor_demo()
|
89 |
+
|
90 |
+
if not HF_TOKEN:
|
91 |
+
show_warning(HF_TOKEN_NOT_SPECIFIED_WARNING)
|
92 |
+
|
93 |
+
demo.queue(api_open=False, max_size=1).launch()
|
app_inference.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import enum
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
|
10 |
+
from constants import MODEL_LIBRARY_ORG_NAME, UploadTarget
|
11 |
+
from inference import InferencePipeline
|
12 |
+
from utils import find_exp_dirs
|
13 |
+
|
14 |
+
|
15 |
+
class ModelSource(enum.Enum):
|
16 |
+
HUB_LIB = UploadTarget.MODEL_LIBRARY.value
|
17 |
+
LOCAL = 'Local'
|
18 |
+
|
19 |
+
|
20 |
+
class InferenceUtil:
|
21 |
+
def __init__(self, hf_token: str | None):
|
22 |
+
self.hf_token = hf_token
|
23 |
+
|
24 |
+
def load_hub_model_list(self) -> dict:
|
25 |
+
api = HfApi(token=self.hf_token)
|
26 |
+
choices = [
|
27 |
+
info.modelId
|
28 |
+
for info in api.list_models(author=MODEL_LIBRARY_ORG_NAME)
|
29 |
+
]
|
30 |
+
return gr.update(choices=choices,
|
31 |
+
value=choices[0] if choices else None)
|
32 |
+
|
33 |
+
@staticmethod
|
34 |
+
def load_local_model_list() -> dict:
|
35 |
+
choices = find_exp_dirs()
|
36 |
+
return gr.update(choices=choices,
|
37 |
+
value=choices[0] if choices else None)
|
38 |
+
|
39 |
+
def reload_model_list(self, model_source: str) -> dict:
|
40 |
+
if model_source == ModelSource.HUB_LIB.value:
|
41 |
+
return self.load_hub_model_list()
|
42 |
+
elif model_source == ModelSource.LOCAL.value:
|
43 |
+
return self.load_local_model_list()
|
44 |
+
else:
|
45 |
+
raise ValueError
|
46 |
+
|
47 |
+
def load_model_info(self, model_id: str) -> tuple[str, str]:
|
48 |
+
try:
|
49 |
+
card = InferencePipeline.get_model_card(model_id, self.hf_token)
|
50 |
+
except Exception:
|
51 |
+
return '', ''
|
52 |
+
base_model = getattr(card.data, 'base_model', '')
|
53 |
+
training_prompt = getattr(card.data, 'training_prompt', '')
|
54 |
+
return base_model, training_prompt
|
55 |
+
|
56 |
+
def reload_model_list_and_update_model_info(
|
57 |
+
self, model_source: str) -> tuple[dict, str, str]:
|
58 |
+
model_list_update = self.reload_model_list(model_source)
|
59 |
+
model_list = model_list_update['choices']
|
60 |
+
model_info = self.load_model_info(model_list[0] if model_list else '')
|
61 |
+
return model_list_update, *model_info
|
62 |
+
|
63 |
+
|
64 |
+
def create_inference_demo(pipe: InferencePipeline,
|
65 |
+
hf_token: str | None = None,
|
66 |
+
disable_run_button: bool = False) -> gr.Blocks:
|
67 |
+
app = InferenceUtil(hf_token)
|
68 |
+
|
69 |
+
with gr.Blocks() as demo:
|
70 |
+
with gr.Row():
|
71 |
+
with gr.Column():
|
72 |
+
with gr.Box():
|
73 |
+
model_source = gr.Radio(
|
74 |
+
label='Model Source',
|
75 |
+
choices=[_.value for _ in ModelSource],
|
76 |
+
value=ModelSource.HUB_LIB.value)
|
77 |
+
reload_button = gr.Button('Reload Model List')
|
78 |
+
model_id = gr.Dropdown(label='Model ID',
|
79 |
+
choices=None,
|
80 |
+
value=None)
|
81 |
+
with gr.Accordion(
|
82 |
+
label=
|
83 |
+
'Model info (Base model and prompt used for training)',
|
84 |
+
open=False):
|
85 |
+
with gr.Row():
|
86 |
+
base_model_used_for_training = gr.Text(
|
87 |
+
label='Base model', interactive=False)
|
88 |
+
prompt_used_for_training = gr.Text(
|
89 |
+
label='Training prompt', interactive=False)
|
90 |
+
prompt = gr.Textbox(
|
91 |
+
label='Prompt',
|
92 |
+
max_lines=1,
|
93 |
+
placeholder='Example: "A panda is surfing"')
|
94 |
+
video_length = gr.Slider(label='Video length',
|
95 |
+
minimum=4,
|
96 |
+
maximum=12,
|
97 |
+
step=1,
|
98 |
+
value=8)
|
99 |
+
fps = gr.Slider(label='FPS',
|
100 |
+
minimum=1,
|
101 |
+
maximum=12,
|
102 |
+
step=1,
|
103 |
+
value=1)
|
104 |
+
seed = gr.Slider(label='Seed',
|
105 |
+
minimum=0,
|
106 |
+
maximum=100000,
|
107 |
+
step=1,
|
108 |
+
value=0)
|
109 |
+
with gr.Accordion('Advanced options', open=False):
|
110 |
+
num_steps = gr.Slider(label='Number of Steps',
|
111 |
+
minimum=0,
|
112 |
+
maximum=100,
|
113 |
+
step=1,
|
114 |
+
value=50)
|
115 |
+
guidance_scale = gr.Slider(label='Guidance scale',
|
116 |
+
minimum=0,
|
117 |
+
maximum=50,
|
118 |
+
step=0.1,
|
119 |
+
value=7.5)
|
120 |
+
|
121 |
+
run_button = gr.Button('Generate',
|
122 |
+
interactive=not disable_run_button)
|
123 |
+
|
124 |
+
gr.Markdown('''
|
125 |
+
- After training, you can press "Reload Model List" button to load your trained model names.
|
126 |
+
- It takes a few minutes to download model first.
|
127 |
+
- Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100)
|
128 |
+
''')
|
129 |
+
with gr.Column():
|
130 |
+
result = gr.Video(label='Result')
|
131 |
+
|
132 |
+
model_source.change(fn=app.reload_model_list_and_update_model_info,
|
133 |
+
inputs=model_source,
|
134 |
+
outputs=[
|
135 |
+
model_id,
|
136 |
+
base_model_used_for_training,
|
137 |
+
prompt_used_for_training,
|
138 |
+
])
|
139 |
+
reload_button.click(fn=app.reload_model_list_and_update_model_info,
|
140 |
+
inputs=model_source,
|
141 |
+
outputs=[
|
142 |
+
model_id,
|
143 |
+
base_model_used_for_training,
|
144 |
+
prompt_used_for_training,
|
145 |
+
])
|
146 |
+
model_id.change(fn=app.load_model_info,
|
147 |
+
inputs=model_id,
|
148 |
+
outputs=[
|
149 |
+
base_model_used_for_training,
|
150 |
+
prompt_used_for_training,
|
151 |
+
])
|
152 |
+
inputs = [
|
153 |
+
model_id,
|
154 |
+
prompt,
|
155 |
+
video_length,
|
156 |
+
fps,
|
157 |
+
seed,
|
158 |
+
num_steps,
|
159 |
+
guidance_scale,
|
160 |
+
]
|
161 |
+
prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
|
162 |
+
run_button.click(fn=pipe.run, inputs=inputs, outputs=result)
|
163 |
+
return demo
|
164 |
+
|
165 |
+
|
166 |
+
if __name__ == '__main__':
|
167 |
+
import os
|
168 |
+
|
169 |
+
hf_token = os.getenv('HF_TOKEN')
|
170 |
+
pipe = InferencePipeline(hf_token)
|
171 |
+
demo = create_inference_demo(pipe, hf_token)
|
172 |
+
demo.queue(api_open=False, max_size=10).launch()
|
app_system_monitor.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import collections
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import nvitop
|
9 |
+
import pandas as pd
|
10 |
+
import plotly.express as px
|
11 |
+
import psutil
|
12 |
+
|
13 |
+
|
14 |
+
class SystemMonitor:
|
15 |
+
MAX_SIZE = 61
|
16 |
+
|
17 |
+
def __init__(self):
|
18 |
+
self.devices = nvitop.Device.all()
|
19 |
+
self.cpu_memory_usage = collections.deque(
|
20 |
+
[0 for _ in range(self.MAX_SIZE)], maxlen=self.MAX_SIZE)
|
21 |
+
self.cpu_memory_usage_str = ''
|
22 |
+
self.gpu_memory_usage = collections.deque(
|
23 |
+
[0 for _ in range(self.MAX_SIZE)], maxlen=self.MAX_SIZE)
|
24 |
+
self.gpu_util = collections.deque([0 for _ in range(self.MAX_SIZE)],
|
25 |
+
maxlen=self.MAX_SIZE)
|
26 |
+
self.gpu_memory_usage_str = ''
|
27 |
+
self.gpu_util_str = ''
|
28 |
+
|
29 |
+
def update(self) -> None:
|
30 |
+
self.update_cpu()
|
31 |
+
self.update_gpu()
|
32 |
+
|
33 |
+
def update_cpu(self) -> None:
|
34 |
+
memory = psutil.virtual_memory()
|
35 |
+
self.cpu_memory_usage.append(memory.percent)
|
36 |
+
self.cpu_memory_usage_str = f'{memory.used / 1024**3:0.2f}GiB / {memory.total / 1024**3:0.2f}GiB ({memory.percent}%)'
|
37 |
+
|
38 |
+
def update_gpu(self) -> None:
|
39 |
+
if not self.devices:
|
40 |
+
return
|
41 |
+
device = self.devices[0]
|
42 |
+
self.gpu_memory_usage.append(device.memory_percent())
|
43 |
+
self.gpu_util.append(device.gpu_utilization())
|
44 |
+
self.gpu_memory_usage_str = f'{device.memory_usage()} ({device.memory_percent()}%)'
|
45 |
+
self.gpu_util_str = f'{device.gpu_utilization()}%'
|
46 |
+
|
47 |
+
def get_json(self) -> dict[str, str]:
|
48 |
+
return {
|
49 |
+
'CPU memory usage': self.cpu_memory_usage_str,
|
50 |
+
'GPU memory usage': self.gpu_memory_usage_str,
|
51 |
+
'GPU Util': self.gpu_util_str,
|
52 |
+
}
|
53 |
+
|
54 |
+
def get_graph_data(self) -> dict[str, list[int | float]]:
|
55 |
+
return {
|
56 |
+
'index': list(range(-self.MAX_SIZE + 1, 1)),
|
57 |
+
'CPU memory usage': self.cpu_memory_usage,
|
58 |
+
'GPU memory usage': self.gpu_memory_usage,
|
59 |
+
'GPU Util': self.gpu_util,
|
60 |
+
}
|
61 |
+
|
62 |
+
def get_graph(self):
|
63 |
+
df = pd.DataFrame(self.get_graph_data())
|
64 |
+
return px.line(df,
|
65 |
+
x='index',
|
66 |
+
y=[
|
67 |
+
'CPU memory usage',
|
68 |
+
'GPU memory usage',
|
69 |
+
'GPU Util',
|
70 |
+
],
|
71 |
+
range_y=[-5,
|
72 |
+
105]).update_layout(xaxis_title='Time',
|
73 |
+
yaxis_title='Percentage')
|
74 |
+
|
75 |
+
|
76 |
+
def create_monitor_demo() -> gr.Blocks:
|
77 |
+
monitor = SystemMonitor()
|
78 |
+
with gr.Blocks() as demo:
|
79 |
+
gr.JSON(value=monitor.update, every=1, visible=False)
|
80 |
+
gr.JSON(value=monitor.get_json, show_label=False, every=1)
|
81 |
+
gr.Plot(value=monitor.get_graph, show_label=False, every=1)
|
82 |
+
return demo
|
83 |
+
|
84 |
+
|
85 |
+
if __name__ == '__main__':
|
86 |
+
demo = create_monitor_demo()
|
87 |
+
demo.queue(api_open=False).launch()
|
app_training.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from constants import UploadTarget
|
10 |
+
from inference import InferencePipeline
|
11 |
+
from trainer import Trainer
|
12 |
+
|
13 |
+
|
14 |
+
def create_training_demo(trainer: Trainer,
|
15 |
+
pipe: InferencePipeline | None = None,
|
16 |
+
disable_run_button: bool = False) -> gr.Blocks:
|
17 |
+
def read_log() -> str:
|
18 |
+
with open(trainer.log_file) as f:
|
19 |
+
lines = f.readlines()
|
20 |
+
return ''.join(lines[-10:])
|
21 |
+
|
22 |
+
with gr.Blocks() as demo:
|
23 |
+
with gr.Row():
|
24 |
+
with gr.Column():
|
25 |
+
with gr.Box():
|
26 |
+
gr.Markdown('Training Data')
|
27 |
+
training_video = gr.File(label='Training video')
|
28 |
+
training_prompt = gr.Textbox(
|
29 |
+
label='Training prompt',
|
30 |
+
max_lines=1,
|
31 |
+
placeholder='A man is surfing')
|
32 |
+
gr.Markdown('''
|
33 |
+
- Upload a video and write a `Training Prompt` that describes the video.
|
34 |
+
''')
|
35 |
+
|
36 |
+
with gr.Column():
|
37 |
+
with gr.Box():
|
38 |
+
gr.Markdown('Training Parameters')
|
39 |
+
with gr.Row():
|
40 |
+
base_model = gr.Text(
|
41 |
+
label='Base Model',
|
42 |
+
value='CompVis/stable-diffusion-v1-4',
|
43 |
+
max_lines=1)
|
44 |
+
resolution = gr.Dropdown(choices=['512', '768'],
|
45 |
+
value='512',
|
46 |
+
label='Resolution',
|
47 |
+
visible=False)
|
48 |
+
|
49 |
+
hf_token = gr.Text(label='Hugging Face Write Token',
|
50 |
+
type='password',
|
51 |
+
visible=os.getenv('HF_TOKEN') is None)
|
52 |
+
with gr.Accordion(label='Advanced options', open=False):
|
53 |
+
num_training_steps = gr.Number(
|
54 |
+
label='Number of Training Steps',
|
55 |
+
value=300,
|
56 |
+
precision=0)
|
57 |
+
learning_rate = gr.Number(label='Learning Rate',
|
58 |
+
value=0.000035)
|
59 |
+
gradient_accumulation = gr.Number(
|
60 |
+
label='Number of Gradient Accumulation',
|
61 |
+
value=1,
|
62 |
+
precision=0)
|
63 |
+
seed = gr.Slider(label='Seed',
|
64 |
+
minimum=0,
|
65 |
+
maximum=100000,
|
66 |
+
step=1,
|
67 |
+
randomize=True,
|
68 |
+
value=0)
|
69 |
+
fp16 = gr.Checkbox(label='FP16', value=True)
|
70 |
+
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam',
|
71 |
+
value=False)
|
72 |
+
checkpointing_steps = gr.Number(
|
73 |
+
label='Checkpointing Steps',
|
74 |
+
value=1000,
|
75 |
+
precision=0)
|
76 |
+
validation_epochs = gr.Number(
|
77 |
+
label='Validation Epochs', value=100, precision=0)
|
78 |
+
gr.Markdown('''
|
79 |
+
- The base model must be a Stable Diffusion model compatible with [diffusers](https://github.com/huggingface/diffusers) library.
|
80 |
+
- Expected time to train a model for 300 steps: ~20 minutes with T4
|
81 |
+
- You can check the training status by pressing the "Open logs" button if you are running this on your Space.
|
82 |
+
''')
|
83 |
+
|
84 |
+
with gr.Row():
|
85 |
+
with gr.Column():
|
86 |
+
gr.Markdown('Output Model')
|
87 |
+
output_model_name = gr.Text(label='Name of your model',
|
88 |
+
placeholder='The surfer man',
|
89 |
+
max_lines=1)
|
90 |
+
validation_prompt = gr.Text(
|
91 |
+
label='Validation Prompt',
|
92 |
+
placeholder=
|
93 |
+
'prompt to test the model, e.g: a dog is surfing')
|
94 |
+
with gr.Column():
|
95 |
+
gr.Markdown('Upload Settings')
|
96 |
+
with gr.Row():
|
97 |
+
upload_to_hub = gr.Checkbox(label='Upload model to Hub',
|
98 |
+
value=True)
|
99 |
+
use_private_repo = gr.Checkbox(label='Private', value=True)
|
100 |
+
delete_existing_repo = gr.Checkbox(
|
101 |
+
label='Delete existing repo of the same name',
|
102 |
+
value=False)
|
103 |
+
upload_to = gr.Radio(
|
104 |
+
label='Upload to',
|
105 |
+
choices=[_.value for _ in UploadTarget],
|
106 |
+
value=UploadTarget.MODEL_LIBRARY.value)
|
107 |
+
|
108 |
+
pause_space_after_training = gr.Checkbox(
|
109 |
+
label='Pause this Space after training',
|
110 |
+
value=False,
|
111 |
+
interactive=bool(os.getenv('SPACE_ID')),
|
112 |
+
visible=False)
|
113 |
+
run_button = gr.Button('Start Training',
|
114 |
+
interactive=not disable_run_button)
|
115 |
+
|
116 |
+
with gr.Box():
|
117 |
+
gr.Text(label='Log',
|
118 |
+
value=read_log,
|
119 |
+
lines=10,
|
120 |
+
max_lines=10,
|
121 |
+
every=1)
|
122 |
+
|
123 |
+
if pipe is not None:
|
124 |
+
run_button.click(fn=pipe.clear)
|
125 |
+
run_button.click(fn=trainer.run,
|
126 |
+
inputs=[
|
127 |
+
training_video,
|
128 |
+
training_prompt,
|
129 |
+
output_model_name,
|
130 |
+
delete_existing_repo,
|
131 |
+
validation_prompt,
|
132 |
+
base_model,
|
133 |
+
resolution,
|
134 |
+
num_training_steps,
|
135 |
+
learning_rate,
|
136 |
+
gradient_accumulation,
|
137 |
+
seed,
|
138 |
+
fp16,
|
139 |
+
use_8bit_adam,
|
140 |
+
checkpointing_steps,
|
141 |
+
validation_epochs,
|
142 |
+
upload_to_hub,
|
143 |
+
use_private_repo,
|
144 |
+
delete_existing_repo,
|
145 |
+
upload_to,
|
146 |
+
pause_space_after_training,
|
147 |
+
hf_token,
|
148 |
+
])
|
149 |
+
return demo
|
150 |
+
|
151 |
+
|
152 |
+
if __name__ == '__main__':
|
153 |
+
trainer = Trainer()
|
154 |
+
demo = create_training_demo(trainer)
|
155 |
+
demo.queue(api_open=False, max_size=1).launch()
|
app_upload.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from constants import MODEL_LIBRARY_ORG_NAME, UploadTarget
|
10 |
+
from uploader import upload
|
11 |
+
from utils import find_exp_dirs
|
12 |
+
|
13 |
+
|
14 |
+
def load_local_model_list() -> dict:
|
15 |
+
choices = find_exp_dirs()
|
16 |
+
return gr.update(choices=choices, value=choices[0] if choices else None)
|
17 |
+
|
18 |
+
|
19 |
+
def create_upload_demo(disable_run_button: bool = False) -> gr.Blocks:
|
20 |
+
model_dirs = find_exp_dirs()
|
21 |
+
|
22 |
+
with gr.Blocks() as demo:
|
23 |
+
with gr.Box():
|
24 |
+
gr.Markdown('Local Models')
|
25 |
+
reload_button = gr.Button('Reload Model List')
|
26 |
+
model_dir = gr.Dropdown(
|
27 |
+
label='Model names',
|
28 |
+
choices=model_dirs,
|
29 |
+
value=model_dirs[0] if model_dirs else None)
|
30 |
+
with gr.Box():
|
31 |
+
gr.Markdown('Upload Settings')
|
32 |
+
with gr.Row():
|
33 |
+
use_private_repo = gr.Checkbox(label='Private', value=True)
|
34 |
+
delete_existing_repo = gr.Checkbox(
|
35 |
+
label='Delete existing repo of the same name', value=False)
|
36 |
+
upload_to = gr.Radio(label='Upload to',
|
37 |
+
choices=[_.value for _ in UploadTarget],
|
38 |
+
value=UploadTarget.MODEL_LIBRARY.value)
|
39 |
+
model_name = gr.Textbox(label='Model Name')
|
40 |
+
hf_token = gr.Text(label='Hugging Face Write Token',
|
41 |
+
type='password',
|
42 |
+
visible=os.getenv('HF_TOKEN') is None)
|
43 |
+
upload_button = gr.Button('Upload', interactive=not disable_run_button)
|
44 |
+
gr.Markdown(f'''
|
45 |
+
- You can upload your trained model to your personal profile (i.e. `https://huggingface.co/{{your_username}}/{{model_name}}`) or to the public [Tune-A-Video Library](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}) (i.e. `https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}/{{model_name}}`).
|
46 |
+
''')
|
47 |
+
with gr.Box():
|
48 |
+
gr.Markdown('Output message')
|
49 |
+
output_message = gr.Markdown()
|
50 |
+
|
51 |
+
reload_button.click(fn=load_local_model_list,
|
52 |
+
inputs=None,
|
53 |
+
outputs=model_dir)
|
54 |
+
upload_button.click(fn=upload,
|
55 |
+
inputs=[
|
56 |
+
model_dir,
|
57 |
+
model_name,
|
58 |
+
upload_to,
|
59 |
+
use_private_repo,
|
60 |
+
delete_existing_repo,
|
61 |
+
hf_token,
|
62 |
+
],
|
63 |
+
outputs=output_message)
|
64 |
+
return demo
|
65 |
+
|
66 |
+
|
67 |
+
if __name__ == '__main__':
|
68 |
+
demo = create_upload_demo()
|
69 |
+
demo.queue(api_open=False, max_size=1).launch()
|
constants.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import enum
|
2 |
+
|
3 |
+
|
4 |
+
class UploadTarget(enum.Enum):
|
5 |
+
PERSONAL_PROFILE = 'Personal Profile'
|
6 |
+
MODEL_LIBRARY = 'Tune-A-Video Library'
|
7 |
+
|
8 |
+
|
9 |
+
MODEL_LIBRARY_ORG_NAME = 'Tune-A-Video-library'
|
10 |
+
SAMPLE_MODEL_REPO = 'Tune-A-Video-library/a-man-is-surfing'
|
11 |
+
URL_TO_JOIN_MODEL_LIBRARY_ORG = 'https://huggingface.co/organizations/Tune-A-Video-library/share/YjTcaNJmKyeHFpMBioHhzBcTzCYddVErEk'
|
inference.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import gc
|
4 |
+
import pathlib
|
5 |
+
import sys
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import imageio
|
10 |
+
import PIL.Image
|
11 |
+
import torch
|
12 |
+
from diffusers.utils.import_utils import is_xformers_available
|
13 |
+
from einops import rearrange
|
14 |
+
from huggingface_hub import ModelCard
|
15 |
+
|
16 |
+
sys.path.append('Tune-A-Video')
|
17 |
+
|
18 |
+
from tuneavideo.models.unet import UNet3DConditionModel
|
19 |
+
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
|
20 |
+
|
21 |
+
|
22 |
+
class InferencePipeline:
|
23 |
+
def __init__(self, hf_token: str | None = None):
|
24 |
+
self.hf_token = hf_token
|
25 |
+
self.pipe = None
|
26 |
+
self.device = torch.device(
|
27 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
28 |
+
self.model_id = None
|
29 |
+
|
30 |
+
def clear(self) -> None:
|
31 |
+
self.model_id = None
|
32 |
+
del self.pipe
|
33 |
+
self.pipe = None
|
34 |
+
torch.cuda.empty_cache()
|
35 |
+
gc.collect()
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def check_if_model_is_local(model_id: str) -> bool:
|
39 |
+
return pathlib.Path(model_id).exists()
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
def get_model_card(model_id: str,
|
43 |
+
hf_token: str | None = None) -> ModelCard:
|
44 |
+
if InferencePipeline.check_if_model_is_local(model_id):
|
45 |
+
card_path = (pathlib.Path(model_id) / 'README.md').as_posix()
|
46 |
+
else:
|
47 |
+
card_path = model_id
|
48 |
+
return ModelCard.load(card_path, token=hf_token)
|
49 |
+
|
50 |
+
@staticmethod
|
51 |
+
def get_base_model_info(model_id: str, hf_token: str | None = None) -> str:
|
52 |
+
card = InferencePipeline.get_model_card(model_id, hf_token)
|
53 |
+
return card.data.base_model
|
54 |
+
|
55 |
+
def load_pipe(self, model_id: str) -> None:
|
56 |
+
if model_id == self.model_id:
|
57 |
+
return
|
58 |
+
base_model_id = self.get_base_model_info(model_id, self.hf_token)
|
59 |
+
unet = UNet3DConditionModel.from_pretrained(
|
60 |
+
model_id,
|
61 |
+
subfolder='unet',
|
62 |
+
torch_dtype=torch.float16,
|
63 |
+
use_auth_token=self.hf_token)
|
64 |
+
pipe = TuneAVideoPipeline.from_pretrained(base_model_id,
|
65 |
+
unet=unet,
|
66 |
+
torch_dtype=torch.float16,
|
67 |
+
use_auth_token=self.hf_token)
|
68 |
+
pipe = pipe.to(self.device)
|
69 |
+
if is_xformers_available():
|
70 |
+
pipe.unet.enable_xformers_memory_efficient_attention()
|
71 |
+
self.pipe = pipe
|
72 |
+
self.model_id = model_id # type: ignore
|
73 |
+
|
74 |
+
def run(
|
75 |
+
self,
|
76 |
+
model_id: str,
|
77 |
+
prompt: str,
|
78 |
+
video_length: int,
|
79 |
+
fps: int,
|
80 |
+
seed: int,
|
81 |
+
n_steps: int,
|
82 |
+
guidance_scale: float,
|
83 |
+
) -> PIL.Image.Image:
|
84 |
+
if not torch.cuda.is_available():
|
85 |
+
raise gr.Error('CUDA is not available.')
|
86 |
+
|
87 |
+
self.load_pipe(model_id)
|
88 |
+
|
89 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
90 |
+
out = self.pipe(
|
91 |
+
prompt,
|
92 |
+
video_length=video_length,
|
93 |
+
width=512,
|
94 |
+
height=512,
|
95 |
+
num_inference_steps=n_steps,
|
96 |
+
guidance_scale=guidance_scale,
|
97 |
+
generator=generator,
|
98 |
+
) # type: ignore
|
99 |
+
|
100 |
+
frames = rearrange(out.videos[0], 'c t h w -> t h w c')
|
101 |
+
frames = (frames * 255).to(torch.uint8).numpy()
|
102 |
+
|
103 |
+
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
104 |
+
writer = imageio.get_writer(out_file.name, fps=fps)
|
105 |
+
for frame in frames:
|
106 |
+
writer.append_data(frame)
|
107 |
+
writer.close()
|
108 |
+
|
109 |
+
return out_file.name
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
patch
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diff --git a/train_tuneavideo.py b/train_tuneavideo.py
|
2 |
+
index 66d51b2..86b2a5d 100644
|
3 |
+
--- a/train_tuneavideo.py
|
4 |
+
+++ b/train_tuneavideo.py
|
5 |
+
@@ -94,8 +94,8 @@ def main(
|
6 |
+
|
7 |
+
# Handle the output folder creation
|
8 |
+
if accelerator.is_main_process:
|
9 |
+
- now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
10 |
+
- output_dir = os.path.join(output_dir, now)
|
11 |
+
+ #now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
12 |
+
+ #output_dir = os.path.join(output_dir, now)
|
13 |
+
os.makedirs(output_dir, exist_ok=True)
|
14 |
+
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
|
15 |
+
|
requirements-monitor.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
nvitop==1.1.1
|
2 |
+
pandas==2.0.0
|
3 |
+
plotly==5.14.1
|
4 |
+
psutil==5.9.4
|
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.18.0
|
2 |
+
bitsandbytes==0.37.2
|
3 |
+
decord==0.6.0
|
4 |
+
diffusers[torch]==0.11.1
|
5 |
+
einops==0.6.0
|
6 |
+
ftfy==6.1.1
|
7 |
+
gradio==3.24.1
|
8 |
+
huggingface-hub==0.13.4
|
9 |
+
imageio==2.27.0
|
10 |
+
imageio-ffmpeg==0.4.8
|
11 |
+
omegaconf==2.3.0
|
12 |
+
Pillow==9.5.0
|
13 |
+
python-slugify==8.0.1
|
14 |
+
tensorboard==2.11.2
|
15 |
+
torch==1.13.1
|
16 |
+
torchvision==0.14.1
|
17 |
+
transformers==4.26.0
|
18 |
+
triton==2.0.0
|
19 |
+
xformers==0.0.16
|
style.css
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|
trainer.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import datetime
|
4 |
+
import os
|
5 |
+
import pathlib
|
6 |
+
import shlex
|
7 |
+
import shutil
|
8 |
+
import subprocess
|
9 |
+
import sys
|
10 |
+
|
11 |
+
import slugify
|
12 |
+
import torch
|
13 |
+
from huggingface_hub import HfApi
|
14 |
+
from omegaconf import OmegaConf
|
15 |
+
|
16 |
+
from uploader import upload
|
17 |
+
from utils import save_model_card
|
18 |
+
|
19 |
+
sys.path.append('Tune-A-Video')
|
20 |
+
|
21 |
+
|
22 |
+
class Trainer:
|
23 |
+
def __init__(self):
|
24 |
+
self.checkpoint_dir = pathlib.Path('checkpoints')
|
25 |
+
self.checkpoint_dir.mkdir(exist_ok=True)
|
26 |
+
|
27 |
+
self.log_file = pathlib.Path('log.txt')
|
28 |
+
self.log_file.touch(exist_ok=True)
|
29 |
+
|
30 |
+
def download_base_model(self, base_model_id: str) -> str:
|
31 |
+
model_dir = self.checkpoint_dir / base_model_id
|
32 |
+
if not model_dir.exists():
|
33 |
+
org_name = base_model_id.split('/')[0]
|
34 |
+
org_dir = self.checkpoint_dir / org_name
|
35 |
+
org_dir.mkdir(exist_ok=True)
|
36 |
+
subprocess.run(shlex.split(
|
37 |
+
f'git clone https://huggingface.co/{base_model_id}'),
|
38 |
+
cwd=org_dir)
|
39 |
+
return model_dir.as_posix()
|
40 |
+
|
41 |
+
def run(
|
42 |
+
self,
|
43 |
+
training_video: str,
|
44 |
+
training_prompt: str,
|
45 |
+
output_model_name: str,
|
46 |
+
overwrite_existing_model: bool,
|
47 |
+
validation_prompt: str,
|
48 |
+
base_model: str,
|
49 |
+
resolution_s: str,
|
50 |
+
n_steps: int,
|
51 |
+
learning_rate: float,
|
52 |
+
gradient_accumulation: int,
|
53 |
+
seed: int,
|
54 |
+
fp16: bool,
|
55 |
+
use_8bit_adam: bool,
|
56 |
+
checkpointing_steps: int,
|
57 |
+
validation_epochs: int,
|
58 |
+
upload_to_hub: bool,
|
59 |
+
use_private_repo: bool,
|
60 |
+
delete_existing_repo: bool,
|
61 |
+
upload_to: str,
|
62 |
+
pause_space_after_training: bool,
|
63 |
+
hf_token: str,
|
64 |
+
) -> None:
|
65 |
+
if not torch.cuda.is_available():
|
66 |
+
raise RuntimeError('CUDA is not available.')
|
67 |
+
if training_video is None:
|
68 |
+
raise ValueError('You need to upload a video.')
|
69 |
+
if not training_prompt:
|
70 |
+
raise ValueError('The training prompt is missing.')
|
71 |
+
if not validation_prompt:
|
72 |
+
raise ValueError('The validation prompt is missing.')
|
73 |
+
|
74 |
+
resolution = int(resolution_s)
|
75 |
+
|
76 |
+
if not output_model_name:
|
77 |
+
timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
|
78 |
+
output_model_name = f'tune-a-video-{timestamp}'
|
79 |
+
output_model_name = slugify.slugify(output_model_name)
|
80 |
+
|
81 |
+
repo_dir = pathlib.Path(__file__).parent
|
82 |
+
output_dir = repo_dir / 'experiments' / output_model_name
|
83 |
+
if overwrite_existing_model or upload_to_hub:
|
84 |
+
shutil.rmtree(output_dir, ignore_errors=True)
|
85 |
+
output_dir.mkdir(parents=True)
|
86 |
+
|
87 |
+
config = OmegaConf.load('Tune-A-Video/configs/man-surfing.yaml')
|
88 |
+
config.pretrained_model_path = self.download_base_model(base_model)
|
89 |
+
config.output_dir = output_dir.as_posix()
|
90 |
+
config.train_data.video_path = training_video.name # type: ignore
|
91 |
+
config.train_data.prompt = training_prompt
|
92 |
+
config.train_data.n_sample_frames = 8
|
93 |
+
config.train_data.width = resolution
|
94 |
+
config.train_data.height = resolution
|
95 |
+
config.train_data.sample_start_idx = 0
|
96 |
+
config.train_data.sample_frame_rate = 1
|
97 |
+
config.validation_data.prompts = [validation_prompt]
|
98 |
+
config.validation_data.video_length = 8
|
99 |
+
config.validation_data.width = resolution
|
100 |
+
config.validation_data.height = resolution
|
101 |
+
config.validation_data.num_inference_steps = 50
|
102 |
+
config.validation_data.guidance_scale = 7.5
|
103 |
+
config.learning_rate = learning_rate
|
104 |
+
config.gradient_accumulation_steps = gradient_accumulation
|
105 |
+
config.train_batch_size = 1
|
106 |
+
config.max_train_steps = n_steps
|
107 |
+
config.checkpointing_steps = checkpointing_steps
|
108 |
+
config.validation_steps = validation_epochs
|
109 |
+
config.seed = seed
|
110 |
+
config.mixed_precision = 'fp16' if fp16 else ''
|
111 |
+
config.use_8bit_adam = use_8bit_adam
|
112 |
+
|
113 |
+
config_path = output_dir / 'config.yaml'
|
114 |
+
with open(config_path, 'w') as f:
|
115 |
+
OmegaConf.save(config, f)
|
116 |
+
|
117 |
+
command = f'accelerate launch Tune-A-Video/train_tuneavideo.py --config {config_path}'
|
118 |
+
with open(self.log_file, 'w') as f:
|
119 |
+
subprocess.run(shlex.split(command),
|
120 |
+
stdout=f,
|
121 |
+
stderr=subprocess.STDOUT,
|
122 |
+
text=True)
|
123 |
+
save_model_card(save_dir=output_dir,
|
124 |
+
base_model=base_model,
|
125 |
+
training_prompt=training_prompt,
|
126 |
+
test_prompt=validation_prompt,
|
127 |
+
test_image_dir='samples')
|
128 |
+
|
129 |
+
with open(self.log_file, 'a') as f:
|
130 |
+
f.write('Training completed!\n')
|
131 |
+
|
132 |
+
if upload_to_hub:
|
133 |
+
upload_message = upload(local_folder_path=output_dir.as_posix(),
|
134 |
+
target_repo_name=output_model_name,
|
135 |
+
upload_to=upload_to,
|
136 |
+
private=use_private_repo,
|
137 |
+
delete_existing_repo=delete_existing_repo,
|
138 |
+
hf_token=hf_token)
|
139 |
+
with open(self.log_file, 'a') as f:
|
140 |
+
f.write(upload_message)
|
141 |
+
|
142 |
+
if pause_space_after_training:
|
143 |
+
if space_id := os.getenv('SPACE_ID'):
|
144 |
+
api = HfApi(token=os.getenv('HF_TOKEN') or hf_token)
|
145 |
+
api.pause_space(repo_id=space_id)
|
uploader.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import pathlib
|
5 |
+
import shlex
|
6 |
+
import subprocess
|
7 |
+
|
8 |
+
import slugify
|
9 |
+
from huggingface_hub import HfApi
|
10 |
+
|
11 |
+
from constants import (MODEL_LIBRARY_ORG_NAME, URL_TO_JOIN_MODEL_LIBRARY_ORG,
|
12 |
+
UploadTarget)
|
13 |
+
|
14 |
+
|
15 |
+
def join_model_library_org(hf_token: str) -> None:
|
16 |
+
subprocess.run(
|
17 |
+
shlex.split(
|
18 |
+
f'curl -X POST -H "Authorization: Bearer {hf_token}" -H "Content-Type: application/json" {URL_TO_JOIN_MODEL_LIBRARY_ORG}'
|
19 |
+
))
|
20 |
+
|
21 |
+
|
22 |
+
def upload(local_folder_path: str,
|
23 |
+
target_repo_name: str,
|
24 |
+
upload_to: str,
|
25 |
+
private: bool = True,
|
26 |
+
delete_existing_repo: bool = False,
|
27 |
+
hf_token: str = '') -> str:
|
28 |
+
hf_token = os.getenv('HF_TOKEN') or hf_token
|
29 |
+
if not hf_token:
|
30 |
+
raise ValueError
|
31 |
+
api = HfApi(token=hf_token)
|
32 |
+
|
33 |
+
if not local_folder_path:
|
34 |
+
raise ValueError
|
35 |
+
if not target_repo_name:
|
36 |
+
target_repo_name = pathlib.Path(local_folder_path).name
|
37 |
+
target_repo_name = slugify.slugify(target_repo_name)
|
38 |
+
|
39 |
+
if upload_to == UploadTarget.PERSONAL_PROFILE.value:
|
40 |
+
organization = api.whoami()['name']
|
41 |
+
elif upload_to == UploadTarget.MODEL_LIBRARY.value:
|
42 |
+
organization = MODEL_LIBRARY_ORG_NAME
|
43 |
+
join_model_library_org(hf_token)
|
44 |
+
else:
|
45 |
+
raise ValueError
|
46 |
+
|
47 |
+
repo_id = f'{organization}/{target_repo_name}'
|
48 |
+
if delete_existing_repo:
|
49 |
+
try:
|
50 |
+
api.delete_repo(repo_id, repo_type='model')
|
51 |
+
except Exception:
|
52 |
+
pass
|
53 |
+
try:
|
54 |
+
api.create_repo(repo_id, repo_type='model', private=private)
|
55 |
+
api.upload_folder(repo_id=repo_id,
|
56 |
+
folder_path=local_folder_path,
|
57 |
+
path_in_repo='.',
|
58 |
+
repo_type='model')
|
59 |
+
url = f'https://huggingface.co/{repo_id}'
|
60 |
+
message = f'Your model was successfully uploaded to {url}.'
|
61 |
+
except Exception as e:
|
62 |
+
message = str(e)
|
63 |
+
return message
|
utils.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import pathlib
|
4 |
+
|
5 |
+
|
6 |
+
def find_exp_dirs() -> list[str]:
|
7 |
+
repo_dir = pathlib.Path(__file__).parent
|
8 |
+
exp_root_dir = repo_dir / 'experiments'
|
9 |
+
if not exp_root_dir.exists():
|
10 |
+
return []
|
11 |
+
exp_dirs = sorted(exp_root_dir.glob('*'))
|
12 |
+
exp_dirs = [
|
13 |
+
exp_dir for exp_dir in exp_dirs
|
14 |
+
if (exp_dir / 'model_index.json').exists()
|
15 |
+
]
|
16 |
+
return [path.relative_to(repo_dir).as_posix() for path in exp_dirs]
|
17 |
+
|
18 |
+
|
19 |
+
def save_model_card(
|
20 |
+
save_dir: pathlib.Path,
|
21 |
+
base_model: str,
|
22 |
+
training_prompt: str,
|
23 |
+
test_prompt: str = '',
|
24 |
+
test_image_dir: str = '',
|
25 |
+
) -> None:
|
26 |
+
image_str = ''
|
27 |
+
if test_prompt and test_image_dir:
|
28 |
+
image_paths = sorted((save_dir / test_image_dir).glob('*.gif'))
|
29 |
+
if image_paths:
|
30 |
+
image_path = image_paths[-1]
|
31 |
+
rel_path = image_path.relative_to(save_dir)
|
32 |
+
image_str = f'''## Samples
|
33 |
+
Test prompt: {test_prompt}
|
34 |
+
|
35 |
+
![{image_path.stem}]({rel_path})'''
|
36 |
+
|
37 |
+
model_card = f'''---
|
38 |
+
license: creativeml-openrail-m
|
39 |
+
base_model: {base_model}
|
40 |
+
training_prompt: {training_prompt}
|
41 |
+
tags:
|
42 |
+
- stable-diffusion
|
43 |
+
- stable-diffusion-diffusers
|
44 |
+
- text-to-image
|
45 |
+
- diffusers
|
46 |
+
- text-to-video
|
47 |
+
- tune-a-video
|
48 |
+
inference: false
|
49 |
+
---
|
50 |
+
|
51 |
+
# Tune-A-Video - {save_dir.name}
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
- Base model: [{base_model}](https://huggingface.co/{base_model})
|
55 |
+
- Training prompt: {training_prompt}
|
56 |
+
|
57 |
+
{image_str}
|
58 |
+
|
59 |
+
## Related papers:
|
60 |
+
- [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
|
61 |
+
- [Stable-Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models
|
62 |
+
'''
|
63 |
+
|
64 |
+
with open(save_dir / 'README.md', 'w') as f:
|
65 |
+
f.write(model_card)
|