Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import gradio as gr
|
|
3 |
import wget
|
4 |
from transformers import pipeline
|
5 |
import requests
|
|
|
6 |
|
7 |
# Nutritionix API setup
|
8 |
api_url = "https://trackapi.nutritionix.com/v2/natural/nutrients"
|
@@ -15,11 +16,14 @@ headers = {
|
|
15 |
|
16 |
# Load the Models
|
17 |
|
|
|
|
|
|
|
18 |
# Load the BLIP VQA Model (Recognize the food)
|
19 |
-
visual_quest_ans = pipeline("visual-question-answering", model="Salesforce/blip-vqa-base")
|
20 |
|
21 |
# Load the Translation Model (English to Arabic)
|
22 |
-
translation_eng_to_ar = pipeline("translation_en_to_ar", model="marefa-nlp/marefa-mt-en-ar")
|
23 |
|
24 |
# Function to recognize food from the image using the VQA model
|
25 |
def food_recognizer(image):
|
|
|
3 |
import wget
|
4 |
from transformers import pipeline
|
5 |
import requests
|
6 |
+
import torch
|
7 |
|
8 |
# Nutritionix API setup
|
9 |
api_url = "https://trackapi.nutritionix.com/v2/natural/nutrients"
|
|
|
16 |
|
17 |
# Load the Models
|
18 |
|
19 |
+
# Check if a GPU is available
|
20 |
+
device = 0 if torch.cuda.is_available() else -1
|
21 |
+
|
22 |
# Load the BLIP VQA Model (Recognize the food)
|
23 |
+
visual_quest_ans = pipeline("visual-question-answering", model="Salesforce/blip-vqa-base", device=device)
|
24 |
|
25 |
# Load the Translation Model (English to Arabic)
|
26 |
+
translation_eng_to_ar = pipeline("translation_en_to_ar", model="marefa-nlp/marefa-mt-en-ar", device=device)
|
27 |
|
28 |
# Function to recognize food from the image using the VQA model
|
29 |
def food_recognizer(image):
|