File size: 6,527 Bytes
771015e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "# Gradio Example Notebook"
      ],
      "metadata": {
        "id": "-Ix16ey2erLl"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        " A separate notebook that demonstrates various Gradio components. If needed,use hardcoded data to show the functionality of the Gradio components.\n"
      ],
      "metadata": {
        "id": "3dxNBkEhexES"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Code"
      ],
      "metadata": {
        "id": "YlfGrVVBe16M"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Libraries\n",
        "\n",
        "Start by installing and importing necessary libraries"
      ],
      "metadata": {
        "id": "7lICoKpGe4kP"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "JBJQeBn0YrwE"
      },
      "outputs": [],
      "source": [
        "!pip install gradio\n",
        "!pip install wget\n",
        "!pip install transformers"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import gradio as gr  # Gradio library to create an interactive interface\n",
        "from transformers import pipeline # Transformers libraries which imports pipeline to use Hugging-Face models\n",
        "import pandas as pd # Pandas library for data manipulation and analysis"
      ],
      "metadata": {
        "id": "OTYay5Uge-Jw"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Initialize Sentiment Analyzer and Define Function\n",
        "\n",
        "Here the sentiment-analyzer is initialized using the Hugging-Face pipeline, Also the function that will be used by the Gradio"
      ],
      "metadata": {
        "id": "Dx7kdVxhfQ0l"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Initialize the analyzer\n",
        "\n",
        "# Loads a pretrained model for the English language\n",
        "analyzer = pipeline(\"sentiment-analysis\")"
      ],
      "metadata": {
        "collapsed": true,
        "id": "RwSoWhwosP3a"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Define Function\n",
        "\n",
        "def sentiment_analysis(filename):\n",
        "  with open(filename, \"r\") as fn:  # Open the file and read the sentences\n",
        "    sentences = fn.readlines()\n",
        "    result = analyzer(sentences) # Store the analyzer results for each sentence\n",
        "    df = pd.DataFrame(result)    # Convert the results in a formatted table\n",
        "    df['sentences'] = sentences  # add column for sentences\n",
        "  return df"
      ],
      "metadata": {
        "id": "dGn2a4A4fQGl"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Build Gradio Interface\n",
        "\n",
        "\n",
        "Here, The Gradio interface is set up using the following components:\n",
        "\n",
        "**A file uploader** allows user to upload a text file which contains the sentences to be analyzed\n",
        "\n",
        "**DataFrame Output** Displays program's output in a structured table format\n",
        "\n",
        "**Title and Description**: Provides clear title and description for the interface"
      ],
      "metadata": {
        "id": "IHHnKudGfFtI"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "#Create the gradio interface\n",
        "demo = gr.Interface(\n",
        "    fn=sentiment_analysis, # Function used by gradio\n",
        "    inputs=gr.File(label=\"Upload a file (txt)\"), # User inputs (file)\n",
        "    outputs=gr.Dataframe(label='Results'), # Program's output (DataFrame)\n",
        "    title='Sentiment-Analysis',\n",
        "    description=\"Gradio interface that allows users to upload a text file containing sentences to be analyzed, the sentences will be classified and results will be in a formatted table\"\n",
        ")\n",
        "demo.launch(debug=True) # \"Debug=True\" Displays inerface errors"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 680
        },
        "id": "xE3M_HFgfN4L",
        "outputId": "d647960b-41c8-4a7d-b67d-bb3055c77721"
      },
      "execution_count": 9,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
            "\n",
            "Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
            "Running on public URL: https://934478ea31903b3a25.gradio.live\n",
            "\n",
            "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "<div><iframe src=\"https://934478ea31903b3a25.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Keyboard interruption in main thread... closing server.\n",
            "Killing tunnel 127.0.0.1:7860 <> https://934478ea31903b3a25.gradio.live\n"
          ]
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": []
          },
          "metadata": {},
          "execution_count": 9
        }
      ]
    }
  ]
}