AbeShinzo0708's picture
Upload 83 files
d232606 verified
raw
history blame
15.3 kB
import argparse
import glob
import json
import logging
import os
import re
import subprocess
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from safetensors import safe_open
from safetensors.torch import save_file
from scipy.io.wavfile import read
from common.log import logger
MATPLOTLIB_FLAG = False
def download_checkpoint(
dir_path, repo_config, token=None, regex="G_*.pth", mirror="openi"
):
repo_id = repo_config["repo_id"]
f_list = glob.glob(os.path.join(dir_path, regex))
if f_list:
print("Use existed model, skip downloading.")
return
for file in ["DUR_0.pth", "D_0.pth", "G_0.pth"]:
hf_hub_download(repo_id, file, local_dir=dir_path, local_dir_use_symlinks=False)
def load_checkpoint(
checkpoint_path, model, optimizer=None, skip_optimizer=False, for_infer=False
):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
iteration = checkpoint_dict["iteration"]
learning_rate = checkpoint_dict["learning_rate"]
logger.info(
f"Loading model and optimizer at iteration {iteration} from {checkpoint_path}"
)
if (
optimizer is not None
and not skip_optimizer
and checkpoint_dict["optimizer"] is not None
):
optimizer.load_state_dict(checkpoint_dict["optimizer"])
elif optimizer is None and not skip_optimizer:
# else: Disable this line if Infer and resume checkpoint,then enable the line upper
new_opt_dict = optimizer.state_dict()
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
optimizer.load_state_dict(new_opt_dict)
saved_state_dict = checkpoint_dict["model"]
if hasattr(model, "module"):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
# assert "emb_g" not in k
new_state_dict[k] = saved_state_dict[k]
assert saved_state_dict[k].shape == v.shape, (
saved_state_dict[k].shape,
v.shape,
)
except:
# For upgrading from the old version
if "ja_bert_proj" in k:
v = torch.zeros_like(v)
logger.warning(
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
)
elif "enc_q" in k and for_infer:
continue
else:
logger.error(f"{k} is not in the checkpoint {checkpoint_path}")
new_state_dict[k] = v
if hasattr(model, "module"):
model.module.load_state_dict(new_state_dict, strict=False)
else:
model.load_state_dict(new_state_dict, strict=False)
logger.info("Loaded '{}' (iteration {})".format(checkpoint_path, iteration))
return model, optimizer, learning_rate, iteration
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
logger.info(
"Saving model and optimizer state at iteration {} to {}".format(
iteration, checkpoint_path
)
)
if hasattr(model, "module"):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save(
{
"model": state_dict,
"iteration": iteration,
"optimizer": optimizer.state_dict(),
"learning_rate": learning_rate,
},
checkpoint_path,
)
def save_safetensors(model, iteration, checkpoint_path, is_half=False, for_infer=False):
"""
Save model with safetensors.
"""
if hasattr(model, "module"):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
keys = []
for k in state_dict:
if "enc_q" in k and for_infer:
continue # noqa: E701
keys.append(k)
new_dict = (
{k: state_dict[k].half() for k in keys}
if is_half
else {k: state_dict[k] for k in keys}
)
new_dict["iteration"] = torch.LongTensor([iteration])
logger.info(f"Saved safetensors to {checkpoint_path}")
save_file(new_dict, checkpoint_path)
def load_safetensors(checkpoint_path, model, for_infer=False):
"""
Load safetensors model.
"""
tensors = {}
iteration = None
with safe_open(checkpoint_path, framework="pt", device="cpu") as f:
for key in f.keys():
if key == "iteration":
iteration = f.get_tensor(key).item()
tensors[key] = f.get_tensor(key)
if hasattr(model, "module"):
result = model.module.load_state_dict(tensors, strict=False)
else:
result = model.load_state_dict(tensors, strict=False)
for key in result.missing_keys:
if key.startswith("enc_q") and for_infer:
continue
logger.warning(f"Missing key: {key}")
for key in result.unexpected_keys:
if key == "iteration":
continue
logger.warning(f"Unexpected key: {key}")
if iteration is None:
logger.info(f"Loaded '{checkpoint_path}'")
else:
logger.info(f"Loaded '{checkpoint_path}' (iteration {iteration})")
return model, iteration
def summarize(
writer,
global_step,
scalars={},
histograms={},
images={},
audios={},
audio_sampling_rate=22050,
):
for k, v in scalars.items():
writer.add_scalar(k, v, global_step)
for k, v in histograms.items():
writer.add_histogram(k, v, global_step)
for k, v in images.items():
writer.add_image(k, v, global_step, dataformats="HWC")
for k, v in audios.items():
writer.add_audio(k, v, global_step, audio_sampling_rate)
def is_resuming(dir_path):
# JP-ExtraバージョンではDURがなくWDがあったり変わるため、Gのみで判断する
g_list = glob.glob(os.path.join(dir_path, "G_*.pth"))
# d_list = glob.glob(os.path.join(dir_path, "D_*.pth"))
# dur_list = glob.glob(os.path.join(dir_path, "DUR_*.pth"))
return len(g_list) > 0
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
f_list = glob.glob(os.path.join(dir_path, regex))
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
try:
x = f_list[-1]
except IndexError:
raise ValueError(f"No checkpoint found in {dir_path} with regex {regex}")
return x
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger("matplotlib")
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def plot_alignment_to_numpy(alignment, info=None):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger("matplotlib")
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
)
fig.colorbar(im, ax=ax)
xlabel = "Decoder timestep"
if info is not None:
xlabel += "\n\n" + info
plt.xlabel(xlabel)
plt.ylabel("Encoder timestep")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def load_wav_to_torch(full_path):
sampling_rate, data = read(full_path)
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
def load_filepaths_and_text(filename, split="|"):
with open(filename, encoding="utf-8") as f:
filepaths_and_text = [line.strip().split(split) for line in f]
return filepaths_and_text
def get_hparams(init=True):
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--config",
type=str,
default="./configs/base.json",
help="JSON file for configuration",
)
parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
args = parser.parse_args()
model_dir = os.path.join("./logs", args.model)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
config_path = args.config
config_save_path = os.path.join(model_dir, "config.json")
if init:
with open(config_path, "r", encoding="utf-8") as f:
data = f.read()
with open(config_save_path, "w", encoding="utf-8") as f:
f.write(data)
else:
with open(config_save_path, "r", vencoding="utf-8") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
return hparams
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
"""Freeing up space by deleting saved ckpts
Arguments:
path_to_models -- Path to the model directory
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
sort_by_time -- True -> chronologically delete ckpts
False -> lexicographically delete ckpts
"""
import re
ckpts_files = [
f
for f in os.listdir(path_to_models)
if os.path.isfile(os.path.join(path_to_models, f))
]
def name_key(_f):
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
def time_key(_f):
return os.path.getmtime(os.path.join(path_to_models, _f))
sort_key = time_key if sort_by_time else name_key
def x_sorted(_x):
return sorted(
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
key=sort_key,
)
to_del = [
os.path.join(path_to_models, fn)
for fn in (
x_sorted("G_")[:-n_ckpts_to_keep]
+ x_sorted("D_")[:-n_ckpts_to_keep]
+ x_sorted("WD_")[:-n_ckpts_to_keep]
+ x_sorted("DUR_")[:-n_ckpts_to_keep]
)
]
def del_info(fn):
return logger.info(f"Free up space by deleting ckpt {fn}")
def del_routine(x):
return [os.remove(x), del_info(x)]
[del_routine(fn) for fn in to_del]
def get_hparams_from_dir(model_dir):
config_save_path = os.path.join(model_dir, "config.json")
with open(config_save_path, "r", encoding="utf-8") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
return hparams
def get_hparams_from_file(config_path):
# print("config_path: ", config_path)
with open(config_path, "r", encoding="utf-8") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
return hparams
def check_git_hash(model_dir):
source_dir = os.path.dirname(os.path.realpath(__file__))
if not os.path.exists(os.path.join(source_dir, ".git")):
logger.warning(
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
source_dir
)
)
return
cur_hash = subprocess.getoutput("git rev-parse HEAD")
path = os.path.join(model_dir, "githash")
if os.path.exists(path):
saved_hash = open(path).read()
if saved_hash != cur_hash:
logger.warning(
"git hash values are different. {}(saved) != {}(current)".format(
saved_hash[:8], cur_hash[:8]
)
)
else:
open(path, "w").write(cur_hash)
def get_logger(model_dir, filename="train.log"):
global logger
logger = logging.getLogger(os.path.basename(model_dir))
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
h = logging.FileHandler(os.path.join(model_dir, filename))
h.setLevel(logging.DEBUG)
h.setFormatter(formatter)
logger.addHandler(h)
return logger
class HParams:
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()
def load_model(model_path, config_path):
hps = get_hparams_from_file(config_path)
net = SynthesizerTrn(
# len(symbols),
108,
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to("cpu")
_ = net.eval()
_ = load_checkpoint(model_path, net, None, skip_optimizer=True)
return net
def mix_model(
network1, network2, output_path, voice_ratio=(0.5, 0.5), tone_ratio=(0.5, 0.5)
):
if hasattr(network1, "module"):
state_dict1 = network1.module.state_dict()
state_dict2 = network2.module.state_dict()
else:
state_dict1 = network1.state_dict()
state_dict2 = network2.state_dict()
for k in state_dict1.keys():
if k not in state_dict2.keys():
continue
if "enc_p" in k:
state_dict1[k] = (
state_dict1[k].clone() * tone_ratio[0]
+ state_dict2[k].clone() * tone_ratio[1]
)
else:
state_dict1[k] = (
state_dict1[k].clone() * voice_ratio[0]
+ state_dict2[k].clone() * voice_ratio[1]
)
for k in state_dict2.keys():
if k not in state_dict1.keys():
state_dict1[k] = state_dict2[k].clone()
torch.save(
{"model": state_dict1, "iteration": 0, "optimizer": None, "learning_rate": 0},
output_path,
)
def get_steps(model_path):
matches = re.findall(r"\d+", model_path)
return matches[-1] if matches else None