|
import argparse
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
import warnings
|
|
|
|
import numpy as np
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
import utils
|
|
from common.log import logger
|
|
from common.stdout_wrapper import SAFE_STDOUT
|
|
from config import config
|
|
|
|
warnings.filterwarnings("ignore", category=UserWarning)
|
|
from pyannote.audio import Inference, Model
|
|
|
|
model = Model.from_pretrained("pyannote/wespeaker-voxceleb-resnet34-LM")
|
|
inference = Inference(model, window="whole")
|
|
device = torch.device(config.style_gen_config.device)
|
|
inference.to(device)
|
|
|
|
|
|
class NaNValueError(ValueError):
|
|
"""カスタム例外クラス。NaN値が見つかった場合に使用されます。"""
|
|
|
|
pass
|
|
|
|
|
|
|
|
def get_style_vector(wav_path):
|
|
return inference(wav_path)
|
|
|
|
|
|
def save_style_vector(wav_path):
|
|
try:
|
|
style_vec = get_style_vector(wav_path)
|
|
except Exception as e:
|
|
print("\n")
|
|
logger.error(f"Error occurred with file: {wav_path}, Details:\n{e}\n")
|
|
raise
|
|
|
|
if np.isnan(style_vec).any():
|
|
print("\n")
|
|
logger.warning(f"NaN value found in style vector: {wav_path}")
|
|
raise NaNValueError(f"NaN value found in style vector: {wav_path}")
|
|
np.save(f"{wav_path}.npy", style_vec)
|
|
|
|
|
|
def process_line(line):
|
|
wavname = line.split("|")[0]
|
|
try:
|
|
save_style_vector(wavname)
|
|
return line, None
|
|
except NaNValueError:
|
|
return line, "nan_error"
|
|
|
|
|
|
def save_average_style_vector(style_vectors, filename="style_vectors.npy"):
|
|
average_vector = np.mean(style_vectors, axis=0)
|
|
np.save(filename, average_vector)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"-c", "--config", type=str, default=config.style_gen_config.config_path
|
|
)
|
|
parser.add_argument(
|
|
"--num_processes", type=int, default=config.style_gen_config.num_processes
|
|
)
|
|
args, _ = parser.parse_known_args()
|
|
config_path = args.config
|
|
num_processes = args.num_processes
|
|
|
|
hps = utils.get_hparams_from_file(config_path)
|
|
|
|
device = config.style_gen_config.device
|
|
|
|
training_lines = []
|
|
with open(hps.data.training_files, encoding="utf-8") as f:
|
|
training_lines.extend(f.readlines())
|
|
with ThreadPoolExecutor(max_workers=num_processes) as executor:
|
|
training_results = list(
|
|
tqdm(
|
|
executor.map(process_line, training_lines),
|
|
total=len(training_lines),
|
|
file=SAFE_STDOUT,
|
|
)
|
|
)
|
|
ok_training_lines = [line for line, error in training_results if error is None]
|
|
nan_training_lines = [
|
|
line for line, error in training_results if error == "nan_error"
|
|
]
|
|
if nan_training_lines:
|
|
nan_files = [line.split("|")[0] for line in nan_training_lines]
|
|
logger.warning(
|
|
f"Found NaN value in {len(nan_training_lines)} files: {nan_files}, so they will be deleted from training data."
|
|
)
|
|
|
|
val_lines = []
|
|
with open(hps.data.validation_files, encoding="utf-8") as f:
|
|
val_lines.extend(f.readlines())
|
|
|
|
with ThreadPoolExecutor(max_workers=num_processes) as executor:
|
|
val_results = list(
|
|
tqdm(
|
|
executor.map(process_line, val_lines),
|
|
total=len(val_lines),
|
|
file=SAFE_STDOUT,
|
|
)
|
|
)
|
|
ok_val_lines = [line for line, error in val_results if error is None]
|
|
nan_val_lines = [line for line, error in val_results if error == "nan_error"]
|
|
if nan_val_lines:
|
|
nan_files = [line.split("|")[0] for line in nan_val_lines]
|
|
logger.warning(
|
|
f"Found NaN value in {len(nan_val_lines)} files: {nan_files}, so they will be deleted from validation data."
|
|
)
|
|
|
|
with open(hps.data.training_files, "w", encoding="utf-8") as f:
|
|
f.writelines(ok_training_lines)
|
|
|
|
with open(hps.data.validation_files, "w", encoding="utf-8") as f:
|
|
f.writelines(ok_val_lines)
|
|
|
|
ok_num = len(ok_training_lines) + len(ok_val_lines)
|
|
|
|
logger.info(f"Finished generating style vectors! total: {ok_num} npy files.")
|
|
|