|
import argparse
|
|
import glob
|
|
import json
|
|
import logging
|
|
import os
|
|
import re
|
|
import subprocess
|
|
|
|
import numpy as np
|
|
import torch
|
|
from huggingface_hub import hf_hub_download
|
|
from safetensors import safe_open
|
|
from safetensors.torch import save_file
|
|
from scipy.io.wavfile import read
|
|
|
|
from common.log import logger
|
|
|
|
MATPLOTLIB_FLAG = False
|
|
|
|
|
|
def download_checkpoint(
|
|
dir_path, repo_config, token=None, regex="G_*.pth", mirror="openi"
|
|
):
|
|
repo_id = repo_config["repo_id"]
|
|
f_list = glob.glob(os.path.join(dir_path, regex))
|
|
if f_list:
|
|
print("Use existed model, skip downloading.")
|
|
return
|
|
for file in ["DUR_0.pth", "D_0.pth", "G_0.pth"]:
|
|
hf_hub_download(repo_id, file, local_dir=dir_path, local_dir_use_symlinks=False)
|
|
|
|
|
|
def load_checkpoint(
|
|
checkpoint_path, model, optimizer=None, skip_optimizer=False, for_infer=False
|
|
):
|
|
assert os.path.isfile(checkpoint_path)
|
|
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
|
iteration = checkpoint_dict["iteration"]
|
|
learning_rate = checkpoint_dict["learning_rate"]
|
|
logger.info(
|
|
f"Loading model and optimizer at iteration {iteration} from {checkpoint_path}"
|
|
)
|
|
if (
|
|
optimizer is not None
|
|
and not skip_optimizer
|
|
and checkpoint_dict["optimizer"] is not None
|
|
):
|
|
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
|
elif optimizer is None and not skip_optimizer:
|
|
|
|
new_opt_dict = optimizer.state_dict()
|
|
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
|
|
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
|
|
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
|
|
optimizer.load_state_dict(new_opt_dict)
|
|
|
|
saved_state_dict = checkpoint_dict["model"]
|
|
if hasattr(model, "module"):
|
|
state_dict = model.module.state_dict()
|
|
else:
|
|
state_dict = model.state_dict()
|
|
|
|
new_state_dict = {}
|
|
for k, v in state_dict.items():
|
|
try:
|
|
|
|
new_state_dict[k] = saved_state_dict[k]
|
|
assert saved_state_dict[k].shape == v.shape, (
|
|
saved_state_dict[k].shape,
|
|
v.shape,
|
|
)
|
|
except:
|
|
|
|
if "ja_bert_proj" in k:
|
|
v = torch.zeros_like(v)
|
|
logger.warning(
|
|
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
|
|
)
|
|
elif "enc_q" in k and for_infer:
|
|
continue
|
|
else:
|
|
logger.error(f"{k} is not in the checkpoint {checkpoint_path}")
|
|
|
|
new_state_dict[k] = v
|
|
|
|
if hasattr(model, "module"):
|
|
model.module.load_state_dict(new_state_dict, strict=False)
|
|
else:
|
|
model.load_state_dict(new_state_dict, strict=False)
|
|
|
|
logger.info("Loaded '{}' (iteration {})".format(checkpoint_path, iteration))
|
|
|
|
return model, optimizer, learning_rate, iteration
|
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
|
logger.info(
|
|
"Saving model and optimizer state at iteration {} to {}".format(
|
|
iteration, checkpoint_path
|
|
)
|
|
)
|
|
if hasattr(model, "module"):
|
|
state_dict = model.module.state_dict()
|
|
else:
|
|
state_dict = model.state_dict()
|
|
torch.save(
|
|
{
|
|
"model": state_dict,
|
|
"iteration": iteration,
|
|
"optimizer": optimizer.state_dict(),
|
|
"learning_rate": learning_rate,
|
|
},
|
|
checkpoint_path,
|
|
)
|
|
|
|
|
|
def save_safetensors(model, iteration, checkpoint_path, is_half=False, for_infer=False):
|
|
"""
|
|
Save model with safetensors.
|
|
"""
|
|
if hasattr(model, "module"):
|
|
state_dict = model.module.state_dict()
|
|
else:
|
|
state_dict = model.state_dict()
|
|
keys = []
|
|
for k in state_dict:
|
|
if "enc_q" in k and for_infer:
|
|
continue
|
|
keys.append(k)
|
|
|
|
new_dict = (
|
|
{k: state_dict[k].half() for k in keys}
|
|
if is_half
|
|
else {k: state_dict[k] for k in keys}
|
|
)
|
|
new_dict["iteration"] = torch.LongTensor([iteration])
|
|
logger.info(f"Saved safetensors to {checkpoint_path}")
|
|
save_file(new_dict, checkpoint_path)
|
|
|
|
|
|
def load_safetensors(checkpoint_path, model, for_infer=False):
|
|
"""
|
|
Load safetensors model.
|
|
"""
|
|
|
|
tensors = {}
|
|
iteration = None
|
|
with safe_open(checkpoint_path, framework="pt", device="cpu") as f:
|
|
for key in f.keys():
|
|
if key == "iteration":
|
|
iteration = f.get_tensor(key).item()
|
|
tensors[key] = f.get_tensor(key)
|
|
if hasattr(model, "module"):
|
|
result = model.module.load_state_dict(tensors, strict=False)
|
|
else:
|
|
result = model.load_state_dict(tensors, strict=False)
|
|
for key in result.missing_keys:
|
|
if key.startswith("enc_q") and for_infer:
|
|
continue
|
|
logger.warning(f"Missing key: {key}")
|
|
for key in result.unexpected_keys:
|
|
if key == "iteration":
|
|
continue
|
|
logger.warning(f"Unexpected key: {key}")
|
|
if iteration is None:
|
|
logger.info(f"Loaded '{checkpoint_path}'")
|
|
else:
|
|
logger.info(f"Loaded '{checkpoint_path}' (iteration {iteration})")
|
|
return model, iteration
|
|
|
|
|
|
def summarize(
|
|
writer,
|
|
global_step,
|
|
scalars={},
|
|
histograms={},
|
|
images={},
|
|
audios={},
|
|
audio_sampling_rate=22050,
|
|
):
|
|
for k, v in scalars.items():
|
|
writer.add_scalar(k, v, global_step)
|
|
for k, v in histograms.items():
|
|
writer.add_histogram(k, v, global_step)
|
|
for k, v in images.items():
|
|
writer.add_image(k, v, global_step, dataformats="HWC")
|
|
for k, v in audios.items():
|
|
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
|
|
|
|
|
def is_resuming(dir_path):
|
|
|
|
g_list = glob.glob(os.path.join(dir_path, "G_*.pth"))
|
|
|
|
|
|
return len(g_list) > 0
|
|
|
|
|
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
|
f_list = glob.glob(os.path.join(dir_path, regex))
|
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
|
try:
|
|
x = f_list[-1]
|
|
except IndexError:
|
|
raise ValueError(f"No checkpoint found in {dir_path} with regex {regex}")
|
|
return x
|
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram):
|
|
global MATPLOTLIB_FLAG
|
|
if not MATPLOTLIB_FLAG:
|
|
import matplotlib
|
|
|
|
matplotlib.use("Agg")
|
|
MATPLOTLIB_FLAG = True
|
|
mpl_logger = logging.getLogger("matplotlib")
|
|
mpl_logger.setLevel(logging.WARNING)
|
|
import matplotlib.pylab as plt
|
|
import numpy as np
|
|
|
|
fig, ax = plt.subplots(figsize=(10, 2))
|
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
|
plt.colorbar(im, ax=ax)
|
|
plt.xlabel("Frames")
|
|
plt.ylabel("Channels")
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def plot_alignment_to_numpy(alignment, info=None):
|
|
global MATPLOTLIB_FLAG
|
|
if not MATPLOTLIB_FLAG:
|
|
import matplotlib
|
|
|
|
matplotlib.use("Agg")
|
|
MATPLOTLIB_FLAG = True
|
|
mpl_logger = logging.getLogger("matplotlib")
|
|
mpl_logger.setLevel(logging.WARNING)
|
|
import matplotlib.pylab as plt
|
|
import numpy as np
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 4))
|
|
im = ax.imshow(
|
|
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
|
)
|
|
fig.colorbar(im, ax=ax)
|
|
xlabel = "Decoder timestep"
|
|
if info is not None:
|
|
xlabel += "\n\n" + info
|
|
plt.xlabel(xlabel)
|
|
plt.ylabel("Encoder timestep")
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def load_wav_to_torch(full_path):
|
|
sampling_rate, data = read(full_path)
|
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"):
|
|
with open(filename, encoding="utf-8") as f:
|
|
filepaths_and_text = [line.strip().split(split) for line in f]
|
|
return filepaths_and_text
|
|
|
|
|
|
def get_hparams(init=True):
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"-c",
|
|
"--config",
|
|
type=str,
|
|
default="./configs/base.json",
|
|
help="JSON file for configuration",
|
|
)
|
|
parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
|
|
|
|
args = parser.parse_args()
|
|
model_dir = os.path.join("./logs", args.model)
|
|
|
|
if not os.path.exists(model_dir):
|
|
os.makedirs(model_dir)
|
|
|
|
config_path = args.config
|
|
config_save_path = os.path.join(model_dir, "config.json")
|
|
if init:
|
|
with open(config_path, "r", encoding="utf-8") as f:
|
|
data = f.read()
|
|
with open(config_save_path, "w", encoding="utf-8") as f:
|
|
f.write(data)
|
|
else:
|
|
with open(config_save_path, "r", vencoding="utf-8") as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
hparams = HParams(**config)
|
|
hparams.model_dir = model_dir
|
|
return hparams
|
|
|
|
|
|
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
|
|
"""Freeing up space by deleting saved ckpts
|
|
|
|
Arguments:
|
|
path_to_models -- Path to the model directory
|
|
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
|
sort_by_time -- True -> chronologically delete ckpts
|
|
False -> lexicographically delete ckpts
|
|
"""
|
|
import re
|
|
|
|
ckpts_files = [
|
|
f
|
|
for f in os.listdir(path_to_models)
|
|
if os.path.isfile(os.path.join(path_to_models, f))
|
|
]
|
|
|
|
def name_key(_f):
|
|
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
|
|
|
|
def time_key(_f):
|
|
return os.path.getmtime(os.path.join(path_to_models, _f))
|
|
|
|
sort_key = time_key if sort_by_time else name_key
|
|
|
|
def x_sorted(_x):
|
|
return sorted(
|
|
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
|
|
key=sort_key,
|
|
)
|
|
|
|
to_del = [
|
|
os.path.join(path_to_models, fn)
|
|
for fn in (
|
|
x_sorted("G_")[:-n_ckpts_to_keep]
|
|
+ x_sorted("D_")[:-n_ckpts_to_keep]
|
|
+ x_sorted("WD_")[:-n_ckpts_to_keep]
|
|
+ x_sorted("DUR_")[:-n_ckpts_to_keep]
|
|
)
|
|
]
|
|
|
|
def del_info(fn):
|
|
return logger.info(f"Free up space by deleting ckpt {fn}")
|
|
|
|
def del_routine(x):
|
|
return [os.remove(x), del_info(x)]
|
|
|
|
[del_routine(fn) for fn in to_del]
|
|
|
|
|
|
def get_hparams_from_dir(model_dir):
|
|
config_save_path = os.path.join(model_dir, "config.json")
|
|
with open(config_save_path, "r", encoding="utf-8") as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
|
|
hparams = HParams(**config)
|
|
hparams.model_dir = model_dir
|
|
return hparams
|
|
|
|
|
|
def get_hparams_from_file(config_path):
|
|
|
|
with open(config_path, "r", encoding="utf-8") as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
|
|
hparams = HParams(**config)
|
|
return hparams
|
|
|
|
|
|
def check_git_hash(model_dir):
|
|
source_dir = os.path.dirname(os.path.realpath(__file__))
|
|
if not os.path.exists(os.path.join(source_dir, ".git")):
|
|
logger.warning(
|
|
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
|
source_dir
|
|
)
|
|
)
|
|
return
|
|
|
|
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
|
|
|
path = os.path.join(model_dir, "githash")
|
|
if os.path.exists(path):
|
|
saved_hash = open(path).read()
|
|
if saved_hash != cur_hash:
|
|
logger.warning(
|
|
"git hash values are different. {}(saved) != {}(current)".format(
|
|
saved_hash[:8], cur_hash[:8]
|
|
)
|
|
)
|
|
else:
|
|
open(path, "w").write(cur_hash)
|
|
|
|
|
|
def get_logger(model_dir, filename="train.log"):
|
|
global logger
|
|
logger = logging.getLogger(os.path.basename(model_dir))
|
|
logger.setLevel(logging.DEBUG)
|
|
|
|
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
|
if not os.path.exists(model_dir):
|
|
os.makedirs(model_dir)
|
|
h = logging.FileHandler(os.path.join(model_dir, filename))
|
|
h.setLevel(logging.DEBUG)
|
|
h.setFormatter(formatter)
|
|
logger.addHandler(h)
|
|
return logger
|
|
|
|
|
|
class HParams:
|
|
def __init__(self, **kwargs):
|
|
for k, v in kwargs.items():
|
|
if type(v) == dict:
|
|
v = HParams(**v)
|
|
self[k] = v
|
|
|
|
def keys(self):
|
|
return self.__dict__.keys()
|
|
|
|
def items(self):
|
|
return self.__dict__.items()
|
|
|
|
def values(self):
|
|
return self.__dict__.values()
|
|
|
|
def __len__(self):
|
|
return len(self.__dict__)
|
|
|
|
def __getitem__(self, key):
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
return setattr(self, key, value)
|
|
|
|
def __contains__(self, key):
|
|
return key in self.__dict__
|
|
|
|
def __repr__(self):
|
|
return self.__dict__.__repr__()
|
|
|
|
|
|
def load_model(model_path, config_path):
|
|
hps = get_hparams_from_file(config_path)
|
|
net = SynthesizerTrn(
|
|
|
|
108,
|
|
hps.data.filter_length // 2 + 1,
|
|
hps.train.segment_size // hps.data.hop_length,
|
|
n_speakers=hps.data.n_speakers,
|
|
**hps.model,
|
|
).to("cpu")
|
|
_ = net.eval()
|
|
_ = load_checkpoint(model_path, net, None, skip_optimizer=True)
|
|
return net
|
|
|
|
|
|
def mix_model(
|
|
network1, network2, output_path, voice_ratio=(0.5, 0.5), tone_ratio=(0.5, 0.5)
|
|
):
|
|
if hasattr(network1, "module"):
|
|
state_dict1 = network1.module.state_dict()
|
|
state_dict2 = network2.module.state_dict()
|
|
else:
|
|
state_dict1 = network1.state_dict()
|
|
state_dict2 = network2.state_dict()
|
|
for k in state_dict1.keys():
|
|
if k not in state_dict2.keys():
|
|
continue
|
|
if "enc_p" in k:
|
|
state_dict1[k] = (
|
|
state_dict1[k].clone() * tone_ratio[0]
|
|
+ state_dict2[k].clone() * tone_ratio[1]
|
|
)
|
|
else:
|
|
state_dict1[k] = (
|
|
state_dict1[k].clone() * voice_ratio[0]
|
|
+ state_dict2[k].clone() * voice_ratio[1]
|
|
)
|
|
for k in state_dict2.keys():
|
|
if k not in state_dict1.keys():
|
|
state_dict1[k] = state_dict2[k].clone()
|
|
torch.save(
|
|
{"model": state_dict1, "iteration": 0, "optimizer": None, "learning_rate": 0},
|
|
output_path,
|
|
)
|
|
|
|
|
|
def get_steps(model_path):
|
|
matches = re.findall(r"\d+", model_path)
|
|
return matches[-1] if matches else None
|
|
|