Spaces:
Runtime error
Runtime error
Update functions.py
Browse files- functions.py +68 -102
functions.py
CHANGED
@@ -16,128 +16,95 @@ finished_models = get_datas(data)
|
|
16 |
df = pd.DataFrame(finished_models)
|
17 |
|
18 |
desc = """
|
19 |
-
This is an automated PR created with https://huggingface.co/spaces/
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
If you encounter any issues, please report them to https://huggingface.co/spaces/eduagarcia-temp/portuguese-leaderboard-results-to-modelcard/discussions
|
24 |
"""
|
25 |
|
26 |
def search(df, value):
|
27 |
-
result_df = df[df["Model
|
28 |
return result_df.iloc[0].to_dict() if not result_df.empty else None
|
29 |
|
30 |
|
31 |
def get_details_url(repo):
|
32 |
-
|
33 |
-
return f"https://huggingface.co/datasets/
|
34 |
|
35 |
|
36 |
def get_query_url(repo):
|
37 |
-
return f"https://huggingface.co/spaces/
|
38 |
|
39 |
|
40 |
def get_task_summary(results):
|
41 |
return {
|
42 |
-
"
|
43 |
-
{"dataset_type":"
|
44 |
-
"dataset_name":"
|
45 |
-
"metric_type":"
|
46 |
-
"metric_value":results["
|
47 |
-
"dataset_config":
|
48 |
-
"dataset_split":"train",
|
49 |
-
"dataset_revision":None,
|
50 |
-
"dataset_args":{"num_few_shot": 3},
|
51 |
-
"metric_name":"accuracy"
|
52 |
-
},
|
53 |
-
"BLUEX":
|
54 |
-
{"dataset_type":"eduagarcia-temp/BLUEX_without_images",
|
55 |
-
"dataset_name":"BLUEX (No Images)",
|
56 |
-
"metric_type":"acc",
|
57 |
-
"metric_value":results["BLUEX"],
|
58 |
-
"dataset_config": None,
|
59 |
-
"dataset_split":"train",
|
60 |
-
"dataset_revision":None,
|
61 |
-
"dataset_args":{"num_few_shot": 3},
|
62 |
-
"metric_name":"accuracy"
|
63 |
-
},
|
64 |
-
"OAB Exams":
|
65 |
-
{"dataset_type":"eduagarcia/oab_exams",
|
66 |
-
"dataset_name":"OAB Exams",
|
67 |
-
"metric_type":"acc",
|
68 |
-
"metric_value":results["OAB Exams"],
|
69 |
-
"dataset_config": None,
|
70 |
-
"dataset_split":"train",
|
71 |
-
"dataset_revision":None,
|
72 |
-
"dataset_args":{"num_few_shot": 3},
|
73 |
-
"metric_name":"accuracy"
|
74 |
-
},
|
75 |
-
"ASSIN2 RTE":
|
76 |
-
{"dataset_type":"assin2",
|
77 |
-
"dataset_name":"Assin2 RTE",
|
78 |
-
"metric_type":"f1_macro",
|
79 |
-
"metric_value":results["ASSIN2 RTE"],
|
80 |
-
"dataset_config": None,
|
81 |
-
"dataset_split":"test",
|
82 |
-
"dataset_revision":None,
|
83 |
-
"dataset_args":{"num_few_shot": 15},
|
84 |
-
"metric_name":"f1-macro"
|
85 |
-
},
|
86 |
-
"ASSIN2 STS":
|
87 |
-
{"dataset_type":"assin2",
|
88 |
-
"dataset_name":"Assin2 STS",
|
89 |
-
"metric_type":"pearson",
|
90 |
-
"metric_value":results["ASSIN2 STS"],
|
91 |
-
"dataset_config": None,
|
92 |
"dataset_split":"test",
|
93 |
"dataset_revision":None,
|
94 |
-
"dataset_args":{"num_few_shot":
|
95 |
-
"metric_name":"
|
96 |
},
|
97 |
-
"
|
98 |
-
{"dataset_type":"
|
99 |
-
"dataset_name":"
|
100 |
-
"metric_type":"
|
101 |
-
"metric_value":results["
|
102 |
-
"dataset_config":
|
103 |
-
"dataset_split":"
|
104 |
"dataset_revision":None,
|
105 |
-
"dataset_args":{"num_few_shot":
|
106 |
-
"metric_name":"
|
107 |
},
|
108 |
-
"
|
109 |
-
|
110 |
-
"
|
111 |
-
"
|
112 |
-
"
|
113 |
-
"
|
|
|
114 |
"dataset_split":"test",
|
115 |
"dataset_revision":None,
|
116 |
-
"dataset_args":{"num_few_shot":
|
117 |
-
"metric_name":"
|
118 |
-
|
119 |
-
"
|
120 |
-
|
121 |
-
"
|
122 |
-
"
|
123 |
-
"
|
124 |
-
"
|
125 |
-
"
|
|
|
126 |
"dataset_revision":None,
|
127 |
-
"dataset_args":{"num_few_shot":
|
128 |
-
"metric_name":
|
129 |
-
|
130 |
-
"
|
131 |
-
|
132 |
-
"
|
133 |
-
"
|
134 |
-
"
|
135 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
"dataset_split":"test",
|
137 |
-
"
|
138 |
-
"
|
139 |
-
|
140 |
-
}
|
141 |
}
|
142 |
|
143 |
|
@@ -147,12 +114,11 @@ def get_eval_results(repo):
|
|
147 |
task_summary = get_task_summary(results)
|
148 |
md_writer = MarkdownTableWriter()
|
149 |
md_writer.headers = ["Metric", "Value"]
|
150 |
-
md_writer.value_matrix = [["
|
151 |
|
152 |
text = f"""
|
153 |
-
# [Open
|
154 |
Detailed results can be found [here]({get_details_url(repo)})
|
155 |
-
|
156 |
{md_writer.dumps()}
|
157 |
"""
|
158 |
return text
|
|
|
16 |
df = pd.DataFrame(finished_models)
|
17 |
|
18 |
desc = """
|
19 |
+
This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr
|
20 |
+
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.
|
21 |
+
If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions
|
|
|
|
|
22 |
"""
|
23 |
|
24 |
def search(df, value):
|
25 |
+
result_df = df[df["Model"] == value]
|
26 |
return result_df.iloc[0].to_dict() if not result_df.empty else None
|
27 |
|
28 |
|
29 |
def get_details_url(repo):
|
30 |
+
author, model = repo.split("/")
|
31 |
+
return f"https://huggingface.co/datasets/open-llm-leaderboard/details_{author}__{model}"
|
32 |
|
33 |
|
34 |
def get_query_url(repo):
|
35 |
+
return f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query={repo}"
|
36 |
|
37 |
|
38 |
def get_task_summary(results):
|
39 |
return {
|
40 |
+
"ARC":
|
41 |
+
{"dataset_type":"ai2_arc",
|
42 |
+
"dataset_name":"AI2 Reasoning Challenge (25-Shot)",
|
43 |
+
"metric_type":"acc_norm",
|
44 |
+
"metric_value":results["ARC"],
|
45 |
+
"dataset_config":"ARC-Challenge",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
"dataset_split":"test",
|
47 |
"dataset_revision":None,
|
48 |
+
"dataset_args":{"num_few_shot": 25},
|
49 |
+
"metric_name":"normalized accuracy"
|
50 |
},
|
51 |
+
"HellaSwag":
|
52 |
+
{"dataset_type":"hellaswag",
|
53 |
+
"dataset_name":"HellaSwag (10-Shot)",
|
54 |
+
"metric_type":"acc_norm",
|
55 |
+
"metric_value":results["HellaSwag"],
|
56 |
+
"dataset_config":None,
|
57 |
+
"dataset_split":"validation",
|
58 |
"dataset_revision":None,
|
59 |
+
"dataset_args":{"num_few_shot": 10},
|
60 |
+
"metric_name":"normalized accuracy"
|
61 |
},
|
62 |
+
"MMLU":
|
63 |
+
{
|
64 |
+
"dataset_type":"cais/mmlu",
|
65 |
+
"dataset_name":"MMLU (5-Shot)",
|
66 |
+
"metric_type":"acc",
|
67 |
+
"metric_value":results["MMLU"],
|
68 |
+
"dataset_config":"all",
|
69 |
"dataset_split":"test",
|
70 |
"dataset_revision":None,
|
71 |
+
"dataset_args":{"num_few_shot": 5},
|
72 |
+
"metric_name":"accuracy"
|
73 |
+
},
|
74 |
+
"TruthfulQA":
|
75 |
+
{
|
76 |
+
"dataset_type":"truthful_qa",
|
77 |
+
"dataset_name":"TruthfulQA (0-shot)",
|
78 |
+
"metric_type":"mc2",
|
79 |
+
"metric_value":results["TruthfulQA"],
|
80 |
+
"dataset_config":"multiple_choice",
|
81 |
+
"dataset_split":"validation",
|
82 |
"dataset_revision":None,
|
83 |
+
"dataset_args":{"num_few_shot": 0},
|
84 |
+
"metric_name":None
|
85 |
+
},
|
86 |
+
"Winogrande":
|
87 |
+
{
|
88 |
+
"dataset_type":"winogrande",
|
89 |
+
"dataset_name":"Winogrande (5-shot)",
|
90 |
+
"metric_type":"acc",
|
91 |
+
"metric_value":results["Winogrande"],
|
92 |
+
"dataset_config":"winogrande_xl",
|
93 |
+
"dataset_split":"validation",
|
94 |
+
"dataset_args":{"num_few_shot": 5},
|
95 |
+
"metric_name":"accuracy"
|
96 |
+
},
|
97 |
+
"GSM8K":
|
98 |
+
{
|
99 |
+
"dataset_type":"gsm8k",
|
100 |
+
"dataset_name":"GSM8k (5-shot)",
|
101 |
+
"metric_type":"acc",
|
102 |
+
"metric_value":results["GSM8K"],
|
103 |
+
"dataset_config":"main",
|
104 |
"dataset_split":"test",
|
105 |
+
"dataset_args":{"num_few_shot": 5},
|
106 |
+
"metric_name":"accuracy"
|
107 |
+
}
|
|
|
108 |
}
|
109 |
|
110 |
|
|
|
114 |
task_summary = get_task_summary(results)
|
115 |
md_writer = MarkdownTableWriter()
|
116 |
md_writer.headers = ["Metric", "Value"]
|
117 |
+
md_writer.value_matrix = [["Avg.", results['Average ⬆️']]] + [[v["dataset_name"], v["metric_value"]] for v in task_summary.values()]
|
118 |
|
119 |
text = f"""
|
120 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
121 |
Detailed results can be found [here]({get_details_url(repo)})
|
|
|
122 |
{md_writer.dumps()}
|
123 |
"""
|
124 |
return text
|